Skip to main content
Log in

Intrinsic support effects on the catalytic performances during Fischer–Tropsch synthesis over well-defined uniform pore-structure Fe-based catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of well-defined and uniform pore-structure (WDUPS) supports with almost identical pore structure, but different surface chemical properties were obtained. Such an approach allows the efficient elimination of the pore structure effect that could not be achieved in the case of conventional supports. Fe was introduced into the as-prepared WDUPS supports by incipient wetness impregnation to obtain WDUPS Fe-based catalysts for investigating the support effects on Fischer–Tropsch synthesis. Based on the reaction results, the Fe2O3 supported on the WDUPS SiO2 exhibited the highest CO conversion and C2-4 olefins selectivities. The other three WDUPS catalysts, whose supports were WDUPS Al2O3, TiO2, and ZrO2, were a favor to form C5+ hydrocarbons during Fischer–Tropsch synthesis. The highest C5+ hydrocarbons selectivity could be obtained over the Fe-based WDUPS catalyst using WDUPS Al2O3 as support. It was proposed that the support effects on the catalytic behaviors obtained in this research work are more reliable than those obtained before by using conventional supports with vague tortuosity and a wide range of pore-size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kang SH, Bae JW, Sai Prasad PS, Park SJ, Woo KJ, Jun KW (2009) Effect of preparation method of Fe-based Fischer-Tropsch catalyst on their light olefin production. Catal Lett 130(3):630–636

    Article  CAS  Google Scholar 

  2. Torres Galvis HM, de Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3(9):2130–2149

    Article  CAS  Google Scholar 

  3. Guo XY, Lu YJ, Wu P, Zhang K, Liu QH, Luo MS (2016) The effect of SiO2 particle size on iron based F-T synthesis catalysts. Chin J Chem Eng 24(7):937–943

    Article  CAS  Google Scholar 

  4. Ghofran Pakdel M, Atashi H, Zohdi-Fasaei H, Mirzaei AA (2019) Effect of temperature on deactivation models of alumina supported iron catalyst during Fischer-Tropsch synthesis. Petrol Sci Technol 37(5):500–505

    Article  CAS  Google Scholar 

  5. Song XX, Zhang QH, Zhang GC, Chen AC, Zheng CJ (2020) Intrinsic effect of crystalline phases in TiO2 on the Fischer-Tropsch synthesis over well-defined and uniform pore-structure Fe/TiO2/SiO2 catalysts. Reac Kinet Mech Cat 129(2):743–753

    Article  CAS  Google Scholar 

  6. Kang SH, Bae JW, Woo KJ, Sai Prasad PS, Jun KW (2010) ZSM-5 supported iron catalysts for Fischer-Tropsch production of light olefin. Fuel Process Technol 91(4):399–403

    Article  CAS  Google Scholar 

  7. Oschatz M, Hofmann JP, van Deelen TW, Lamme WS, Krans NA, Hensen EJM, de Jong KP (2017) Effects of ordered mesoporous carbon support surface functionalization on iron catalysts for the Fischer-Tropsch synthesis of lower olefins. ChemCatChem 9(4):620–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Al-Dossary M, Fierro JLG, Spivey JJ (2015) Cu-promoted Fe2O3/MgO-based Fischer-Tropsch catalysts of biomass-derived syngas. Ind Eng Chem Res 54(3):911–921

    Article  CAS  Google Scholar 

  9. Zhou W, Cheng K, Kang JC, Zhou C, Subramanian V, Zhang QH, Wang Y (2019) New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev 48(12):3193–3228

    Article  CAS  PubMed  Google Scholar 

  10. Zhang QH, Kang JC, Wang Y (2010) Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity. ChemCatChem 2(9):1030–1058

    Article  CAS  Google Scholar 

  11. Chen AC, Chen SL, Hua DR, Zhou Z, Wang ZG, Wu J, Zhang JH (2013) Diffusion of heavy oil in well-defined and uniform pore-structure catalyst under hydrodemetallization reaction conditions. Chem Eng J 231:420–426

    Article  CAS  Google Scholar 

  12. Krishnan CK, Hayashi T, Ogura M (2008) A new method for post-synthesis coating of zirconia on the mesopore walls of SBA-15 without pore blocking. Adv Mater 20(11):2131–2136

    Article  Google Scholar 

  13. Zhou Z, Chen SL, Hua DR, Wang ZG, Chen AC, Wang WH (2013) Tailored ordered porous alumina with well-defined and uniform pore-structure. Chem Eng J 223:670–677

    Article  CAS  Google Scholar 

  14. Zhu SM, Zhang D, Zhang XC, Zhang L, Ma XW, Zhang YL, Cai M (2009) Sonochemical incorporation of nanosized TiO2 inside mesoporous silica with high photocatalytic performance. Microporous Mesoporous Mater 126(1):20–25

    Article  CAS  Google Scholar 

  15. Zhou Z, Chen SL, Hua DR, Chen AC, Wang ZG, Zhang JH, Gao JS (2012) Structure and activity of NiMo/alumina hydrodesulfurization model catalyst with ordered opal-like pores. Catal Commun 19:5–9

    Article  CAS  Google Scholar 

  16. Nie Z, Jiang P, Zhang P, Liu D, Haryono A, Zhao M, Zhao H (2021) Zirconia-coated magnetic Fe2O3 nanoparticles supported 12-tungstophosphoric acid: a novel environmentally friendly catalyst for biodiesel production. J Chin Chem Soc 68(5):837–848

    Article  CAS  Google Scholar 

  17. Cui X, Zhang Q, Tian M, Dong Z (2017) Facile fabrication of γ-Fe2O3-nanoparticle modified N-doped porous carbon materials for the efficient hydrogenation of nitroaromatic compounds. New J Chem 41(18):10165–10173

    Article  CAS  Google Scholar 

  18. Feyzi M, Rafiee HR, Jafari F (2014) Preparation and characterization of Fe-V/TiO2-SiO2 nanocatalyst modified by zinc. B Mater Sci 37(6):1375–1382

    Article  CAS  Google Scholar 

  19. Sunaryono S, Fitriana DR, Novita LR, Hidayat MF, Hartatiek H, Mufti N, Taufiq A (2020) The effect of Fe3O4 concentration to photocatalytic activity of Fe3O4@TiO2-PVP core-shell nanocomposite. J Phys Conf Ser 1595:012003

    Article  CAS  Google Scholar 

  20. Biswas K, Bandhoyapadhyay D, Ghosh UC (2007) Adsorption kinetics of fluoride on iron(III)-zirconium(IV) hybrid oxide. Adsorption 13(1):83–94

    Article  CAS  Google Scholar 

  21. Wang B, Yan R, Lee DH, Zheng Y, Zhao H, Zheng C (2011) Characterization and evaluation of Fe2O3/Al2O3 oxygen carrier prepared by sol–gel combustion synthesis. J Anal Appl Pyrol 91(1):105–113

    Article  CAS  Google Scholar 

  22. Rout TK, Bandyopadhyay N, Narayan R, Rani N, Sengupta DK (2008) Performance of titania-silica composite coating on interstitial-free steel sheet. Scr Mater 58(6):473–476

    Article  CAS  Google Scholar 

  23. Pérez Robles F, García Rodríguez FJ, Jiménez Sandoval S, González Hernández J (1999) Raman study of copper and iron oxide particles embedded in an SiO2 matrix. J Raman Spectrosc 30(12):1099–1104

    Article  Google Scholar 

  24. Wang HY, Huang SY, Wang J, Zhao Q, Wang YF, Wang Y, Ma XB (2019) Effect of Ca promoter on the structure and catalytic behavior of FeK/Al2O3 catalyst in Fischer-Tropsch synthesis. ChemCatChem 11(14):3220–3226

    Article  CAS  Google Scholar 

  25. Tian ZP, Wang CG, Si Z, Ma LL, Chen LG, Liu QY, Zhang Q, Huang HY (2017) Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method. Appl Catal A: Gen 541:50–59

    Article  CAS  Google Scholar 

  26. Shen JT, Feng XH, Liu R, Xu XL, Rao C, Liu JJ, Fang XZ, Tan C, Xie YC, Wang X (2019) Tuning SnO2 surface with CuO for soot particulate combustion: the effect of monolayer dispersion capacity on reaction performance. Chin J Catal 40(6):905–916

    Article  CAS  Google Scholar 

  27. Zieliński J, Zglinicka I, Znak L, Kaszkur Z (2010) Reduction of Fe2O3 with hydrogen. Appl Catal A: Gen 381(1):191–196

    Article  Google Scholar 

  28. Cano LA, Garcia Blanco AA, Lener G, Marchetti SG, Sapag K (2017) Effect of the support and promoters in Fischer-Tropsch synthesis using supported Fe catalysts. Catal Today 282:204–213

    Article  CAS  Google Scholar 

  29. Suo HY, Wang SG, Zhang CH, Xu J, Wu BS, Yang Y, Xiang HW, Li YW (2012) Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts. J Catal 286:111–123

    Article  CAS  Google Scholar 

  30. Jiang F, Zhang M, Liu B, Xu YB, Liu XH (2017) Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer-Tropsch synthesis: understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation. Catal Sci Technol 7(5):1245–1265

    Article  CAS  Google Scholar 

  31. van Steen E, Claeys M, Dry ME, van de Loosdrecht J, Viljoen EL, Visagie JL (2005) Stability of nanocrystals: thermodynamic analysis of oxidation and re-reduction of cobalt in water/hydrogen mixtures. J Phys Chem B 109(8):3575–3577

    Article  PubMed  Google Scholar 

  32. Pendyala VRR, Jacobs G, Ma WP, Shafer WD, Sparks DE, MacLennan A, Hu YF, Davis BH (2018) Fischer-Tropsch synthesis: effect of carbonyl sulfide poison over a Pt promoted Co/alumina catalyst. Catal Today 299:14–19

    Article  CAS  Google Scholar 

  33. Madon RJ, Reyes SC, Iglesia E (1991) Primary and secondary reaction pathways in ruthenium-catalyzed hydrocarbon synthesis. J Phys Chem 95(20):7795–7804

    Article  CAS  Google Scholar 

  34. Park JY, Lee YJ, Karandikar PR, Jun KW, Ha KS, Park HG (2012) Fischer-Tropsch catalysts deposited with size-controlled Co3O4 nanocrystals: effect of Co particle size on catalytic activity and stability. Appl Catal A: Gen 411–412:15–23

    Article  Google Scholar 

  35. Park SJ, Bae JW, Oh JH, Chary KVR, Prasad PSS, Jun KW, Rhee YW (2009) Influence of bimodal pore size distribution of Ru/Co/ZrO2-Al2O3 during Fischer-Tropsch synthesis in fixed-bed and slurry reactor. J Mol Catal A: Chem 298(1):81–87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province (Nos. 2018J05014, 2019J01265) and Science Foundation of the Education Department of Fujian Province (No. JT180085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-cheng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15380 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Xx., Zhang, Qh., Xu, Jy. et al. Intrinsic support effects on the catalytic performances during Fischer–Tropsch synthesis over well-defined uniform pore-structure Fe-based catalysts. Reac Kinet Mech Cat 133, 983–996 (2021). https://doi.org/10.1007/s11144-021-02036-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02036-2

Keywords

Navigation