Skip to main content
Log in

Identification of a Metacaspase Gene in the Bloom-Forming Dinoflagellate Prorocentrum minimum and its Putative Function Involved in Programmed Cell Death

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Programmed cell death (PCD) in dinoflagellates has been introduced as a new concept that facilitates the demise of harmful algal blooms. Metacaspases (MCAs) play a role in PCD, but their function in dinoflagellates is unclear. Here, we cloned a novel MCA gene (PmMCA) from the harmful dinoflagellate Prorocentrum minimum and examined its molecular characteristics and gene expression during cell death. The gene was encoded in the nuclear genome with two introns. The putative protein contained 288 amino acids and three conserved MCA signature motifs. Phylogenetic analysis showed that PmMCA may have the same ancestor as other dinoflagellates. PmMCA expression and cell apoptosis were significantly induced under copper exposure, considerably affecting cell growth. These results suggest that PmMCA could be involved in PCD triggered by copper stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

aa:

Amino acids

BLAST:

Basic local alignment search tool

CTAB:

Cetyltrimethylammonium bromide

EC50 :

Median effective concentration

EST:

Expressed sequence tag

HABs:

Harmful algal blooms

MCA:

Metacaspase

M13F:

M13 forward

M13R:

M13 reverse

NJ:

Neighbor-joining

ORF:

Open reading frame

PCD:

Programmed cell death

PI:

Propidium iodide

Pm:

Prorocentrum minimum

RACE:

Rapid amplification of cDNA ends

UTR:

Untranslated region

DinoSL:

Dinoflagellate spliced leader

References

  1. Taylor FJR, Hoppenrath M, Saldarriaga JF (2008) Dinoflagellate diversity and distribution. Biodivers Conserv 17:407–418. https://doi.org/10.1007/s10531-007-9258-3

    Article  Google Scholar 

  2. Kudela RM, Gobler CJ (2012) Harmful dinoflagellate blooms caused by Cochlodinium sp.: global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14:71–86. https://doi.org/10.1016/j.hal.2011.10.015

    Article  Google Scholar 

  3. Huang K, Feng Q, Zhang Y, Ou L, Cen J, Lu S, Qi Y (2020) Comparative uptake and assimilation of nitrate, ammonium, and urea by dinoflagellate Karenia mikimotoi and diatom Skeletonema costatum s.l. in the coastal waters of the East China Sea. Mar Pollut Bull 155:111200. https://doi.org/10.1016/j.marpolbul.2020.111200

    Article  CAS  PubMed  Google Scholar 

  4. Spungin D, Bidle KD, Berman-Frank I (2019) Metacaspase involvement in programmed cell death of the marine cyanobacterium Trichodesmium. Environ Microbiol 21:667–681. https://doi.org/10.1111/1462-2920.14512

    Article  CAS  PubMed  Google Scholar 

  5. Franklin DJ, Brussaard CPD, Berges JA (2006) What is the role and nature of programmed cell death in phytoplankton ecology? Eur J Phycol 41:1–14. https://doi.org/10.1080/09670260500505433

    Article  Google Scholar 

  6. Johnson JG, Janech MG, Van Dolah FM (2014) Caspase-like activity during aging and cell death in the toxic dinoflagellate Karenia brevis. Harmful Algae 31:41–53. https://doi.org/10.1016/j.hal.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  7. Vavilala SL, Gawde KK, Sinha M, Souza JS, European JD (2015) Programmed cell death is induced by hydrogen peroxide by not by excessive ionic stress of sodium chloride in the unicellular green alga Chlamydomonas reinhardtii. Eur J Phycol 50:422–438. https://doi.org/10.1080/09670262.2015.1070437

    Article  CAS  Google Scholar 

  8. Rogers HJ (2005) Cell death and organ development in plants. Curr Top Dev Biol 71:225–261. https://doi.org/10.1016/S0070-2153(05)71007-3

    Article  CAS  PubMed  Google Scholar 

  9. Pokrzywinski KL, Tilney CL, Warner ME, Coyne KJ (2017) Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA. Sci Rep 7:45102. https://doi.org/10.1038/srep45102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Locato V, De Gara L (2018) Programmed cell death in plants: an overview. Methods Mol Biol 1743:1–8. https://doi.org/10.1007/978-1-4939-7668-3_1

    Article  CAS  PubMed  Google Scholar 

  11. Choi CJ, Berges JA (2013) New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases. Cell Death Dis 4:e490. https://doi.org/10.1038/cddis.2013.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Asplund-Samuelsson J, Sundh J, Dupont CL, Allen AE, McCrow JP, Celepli NA, Bergman B, Ininbergs K, Ekman M (2016) Diversity and expression of bacterial metacaspases in an aquatic ecosystem. Front Microbiol 7:1043. https://doi.org/10.3389/fmicb.2016.01043

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bidle KD, Bender SJ (2008) Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. Eukaryot Cell 7:223–236. https://doi.org/10.1128/EC.00296-07

    Article  CAS  PubMed  Google Scholar 

  14. Thamatrakoln K, Korenovska O, Niheu AK, Bidle KD (2012) Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Environ Microbiol 14:67–81. https://doi.org/10.1111/j.1462-2920.2011.02468.x

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Yang G, Liu Y, Yu W, Pan K, Li RX, Zhu M (2006) Induction of programed cell death in aging Prorocentrum donghaiense cells as was evidenced preliminarily by the identification of associated transcripts. Acta Biol Hung 57:473–483. https://doi.org/10.1556/ABiol.57.2006.4.9

    Article  PubMed  Google Scholar 

  16. Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, Piel J, Ashoor H, Bougouffa S, Bajic VB, Ryu T, Ravasi T, Bayer T, Micklem G, Kim H, Bhak J, LaJeunesse TC, Voolstra CR (2016) Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep 6:39734. https://doi.org/10.1038/srep39734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Park BS, Lim W-A, Ki J-S (2018) CpMCA, a novel metacaspase gene from the harmful dinoflagellate Cochlodinium polykrikoides and its expression during cell death. Gene 651:70–78. https://doi.org/10.1016/j.gene.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  18. Okamoto OK, Hastings JW (2003) Genome-wide analysis of redox-regulated genes in a dinoflagellate. Gene 321:73–81. https://doi.org/10.1016/j.gene.2003.07.003

    Article  CAS  PubMed  Google Scholar 

  19. Guo R, Wang H, Suh YS, Ki J-S (2016) Transcriptomic profiles reveal the genome-wide responses of the harmful dinoflagellate Cochlodinium polykrikoides when exposed to the algicide copper sulfate. BMC Genomics 17:29. https://doi.org/10.1186/s12864-015-2341-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H, Abassi S, Ki J-S (2019) Origin and roles of a novel copper-zinc superoxide dismutase gene from the harmful dinoflagellate Prorocentrum minimum. Gene 683:113–122. https://doi.org/10.1016/j.gene.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  21. Guo R, Ebenezer V, Ki J-S (2012) Transcriptional responses of heat shock protein 70 (HSP70) to thermal, bisphenol A, and copper stresses in the dinoflagellate Prorocentrum minimum. Chemosphere 89:512–520. https://doi.org/10.1016/j.chemosphere.2012.05.014

    Article  CAS  PubMed  Google Scholar 

  22. Wang H, Kim H, Lim W-A, Ki J-S (2019) Molecular cloning and oxidative-stress responses of a novel manganese superoxide dismutase (MnSOD) gene in the dinoflagellate Prorocentrum minimum. Mol Biol Rep 46:5955–5966. https://doi.org/10.1007/s11033-019-05029-6

    Article  CAS  PubMed  Google Scholar 

  23. Heil CA, Glibert PM, Fan CL (2005) Prorocentrum minimum (Pavillard) Schiller: a review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4:449–470. https://doi.org/10.1016/j.hal.2004.08.003

    Article  CAS  Google Scholar 

  24. Stein JR (1973) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, London, p 448

    Google Scholar 

  25. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326. https://doi.org/10.1093/nar/8.19.4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maruyama IN, Rakow TL, Maruyama HI (1995) cRACE: a simple method for identification of the 5′end of mRNAs. Nucleic Acids Res 23:3796–3797. https://doi.org/10.1093/nar/23.18.3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Kim H, Ki J-S (2021) Transcriptomic identification and expression analysis of cold shock domain protein (CSP) genes in the marine dinoflagellate Prorocentrum minimum. J Appl Phycol 33:843–854. https://doi.org/10.1007/s10811-020-02332-9

    Article  CAS  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, Lin S (2007) Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci USA 104:4618–4623. https://doi.org/10.1073/pnas.0700258104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo R, Ki J-S (2011) Spliced leader sequences detected in EST data of the dinoflagellates Cochlodinium polykrikoides and Prorocentrum minimum. Algae 26:229–235. https://doi.org/10.4490/algae.2011.26.3.229

    Article  CAS  Google Scholar 

  33. Vercammen D, van de Cotte B, De Jaeger G, Eeckhout D, Casteels P, Vandepoele K, Vandenberghe I, Van Beeumen J, Inzé D, Van Breusegem F (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279:45329–45336. https://doi.org/10.1074/jbc.M406329200

    Article  CAS  PubMed  Google Scholar 

  34. Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Differ 18:1279–1288. https://doi.org/10.1038/cdd.2011.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carvalho RN, Bopp SK, Lettieri T (2011) Transcriptomics responses in marine diatom Thalassiosira pseudonana exposed to the polycyclic aromatic hydrocarbon benzo[a]pyrene. PLoS ONE 6:e26985. https://doi.org/10.1371/journal.pone.0026985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kebeish R, El-Ayouty Y, Husain A (2014) Effect of copper on growth, bioactive metabolites, antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris. World J Biol Biol Sci 2:34–43

    Google Scholar 

  37. Abassi S, Wang H, Ponmani T, Ki J-S (2019) Small heat shock protein genes of the green algae Closterium ehrenbergii: Cloning and differential expression under heat and heavy metal stresses. Environ Toxicol 34:1013–1024. https://doi.org/10.1002/tox.22772

    Article  CAS  PubMed  Google Scholar 

  38. Ebenezer V, Lim W-A, Ki J-S (2014) Effects of the algicides CuSO4 and NaOCl on various physiological parameters in the harmful dinoflagellate Cochlodinium polykrikoides. J Appl Phycol 26:2357–2365. https://doi.org/10.1007/s10811-014-0267-9

    Article  CAS  Google Scholar 

  39. Segovia M, Berges JA (2009) Inhibition of caspase-like activities prevents the appearance of reactive oxygen species and dark-induced apoptosis in the unicellular chlorophyte Dunaliella tertiolecta. J Phycol 45:1116–1126. https://doi.org/10.1111/j.1529-8817.2009.00733.x

    Article  CAS  PubMed  Google Scholar 

  40. Jauzein C, Erdner DL (2013) Stress-related responses in Alexandrium tamarense cells exposed to environmental changes. J Eukaryot Microbiol 60:526–538. https://doi.org/10.1111/jeu.12065

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2020R1A2C2013373), and a part of the project titled ‘Development of hull adherent organism management technology (20210651),’ funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Contributions

HW performed the study and drafted the manuscript; JSK revised and edited the manuscript.

Corresponding author

Correspondence to Jang-Seu Ki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2021_2617_MOESM1_ESM.tif

Supplementary file1 Multiple sequence alignments (A) and homoly matrix (B) of deduced amino acid sequences of PmMCA with those of other MCAs. Amino acid sequences from 10 MCAs share similar residues. A short linker was present between P20 and P10 subunits. The signature motifs were marked with black box. GenBank accession numbers of aligned proteins are as follows: Margalefidinium polykrikoides, AVD29967; Microcystis aeruginosa, WP_002768321; Gregarina niphandrodes, XP_011130889; Fistulifera solaris, GAX24014; Coccomyxa subellipsoidea, XP_005649943; Gonium pectorale, KXZ52917; Erythranthe guttata, XP_012858139; Zostera marina, KMZ57843; Prorocentrum micans, comp12808_c0 was obtained from P. micans transcriptome data. (TIF 2500 kb)

284_2021_2617_MOESM2_ESM.tif

Supplementary file2 The maximum-likelihood tree of deduced amino acid sequence of PmMCA. The phylogenetic position of present P. minimum is marked with a red color. The amino acid sequences used in this study were obtained from GenBank database. (TIF 893 kb)

Supplementary file3 (XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ki, JS. Identification of a Metacaspase Gene in the Bloom-Forming Dinoflagellate Prorocentrum minimum and its Putative Function Involved in Programmed Cell Death. Curr Microbiol 78, 3577–3585 (2021). https://doi.org/10.1007/s00284-021-02617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02617-3

Navigation