Skip to main content
Log in

Antiproliferative and Oxidative Damage Protection Activities of Endophytic Fungi Aspergillus fumigatus and Chaetomium globosum from Moringa oleifera Lam.

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The current study was conducted to evaluate the antiproliferative and oxidative damage protection potential of endophytic fungi Aspergillus fumigatus and Chaetomium globosum isolated from Moringa oleifera. The chloroformic extract (CE) of both the fungi showed dose dependent antiproliferative activity against human prostate adenocarcinoma (PC-3) cell line with (IC50) value of 0.055 mg/ml and 0.008 mg/ml, respectively. Further, CE of both the fungi was studied for their ability to induce apoptosis in PC-3 cell line. Various deformities in the cancerous cells treated with CE of both the fungi have been observed by confocal microscopy which indicates the cell death by apoptosis. Further apoptosis inducing ability of CE of both the fungi was observed using various flow cytometric studies. The chloroformic extract of both the fungi showed slight increase in the level of reactive oxygen species to induce apoptosis. It also showed arrest of cancerous cells at G0/G1 phase of cell cycle to induce apoptosis. The externalization of phosphatidylserine (PS) to induce apoptosis was also observed when analysed using Annexin V-FITC/PI double staining assay where the CE of A. fumigatus and C. globosum showed the total apoptosis of 94.2% and 90.3%, respectively, at the highest tested concentration of GI70. The CE of both the fungi further showed the protective behaviour for plasmid DNA pBR322, when tested for their effect against the oxidative stress caused by the Fenton’s reagent. Thus, the studies demonstrated a good antiproliferative and oxidative damage protection potential of the endophytic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Law, J. W. F., Law, L. N. S., Letchumanan, V., Tan, L. T. H., Wong, S. H., Chan, K. G. A., Mutalib, N. S., & Lee, L. H. (2020). Anticancer drug discovery from microbial sources: The unique mangrove Streptomycetes. Molecules, 25, 5365.

    Article  CAS  PubMed Central  Google Scholar 

  2. Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biology and Medicine, 49, 1603–1616.

    Article  CAS  PubMed  Google Scholar 

  3. Newman, D. J., & Crag, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79, 629–661.

    Article  CAS  PubMed  Google Scholar 

  4. Petrini, O. (1991). Fungal endophyte of tree leaves. In J. H. Andrews & S. S. Hirana (Eds.), Microbial Ecology of leaves (pp. 179–197). Springer Verlag.

    Chapter  Google Scholar 

  5. Amirita, A., Sindhu, P., Swetha, J., Vasanthi, N. S., & Kannan, K. P. (2012). Enumeration of endophytic fungi from medicinal plants and screening of extracellular enzymes. World Journal of Microbiology and Biotechnology, 2, 13–19.

    CAS  Google Scholar 

  6. Li, Y., Lu, C., Hu, Z., Huang, Y., & Shen, Y. (2009). Secondary metabolites of Tubercularia sp. TF5, an endophytic fungal strain of Taxus mairei. Natural Product Research, 23, 70–76.

    Article  PubMed  Google Scholar 

  7. Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661–686.

    Article  PubMed  Google Scholar 

  8. Li, H., Qing, C., Zhang, Y., & Zhao, Z. (2005). Screening for endophytic fungi with antitumor and antifungal activities from Chinese medicinal plants. World Journal of Microbiology and Biotechnology, 27, 3005–3008.

    Google Scholar 

  9. Wiyakrutta, S., Sriubolmas, N., Panphut, W., Thongon, N., Danwisetkanjana, K., Ruangrungsi, N., & Meevootisom, V. (2004). Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World Journal of Microbiology and Biotechnology, 20, 265–272.

    Article  Google Scholar 

  10. Chuang, K. T., Wong, T. Y., Wei, Y., Huang, Y. W., & Lin, Y. (1998). Tannins and human health: A review. Critical Reviews in Food Science and Nutrition, 38, 421–464.

    Article  Google Scholar 

  11. Fahey, J. W. (2005). Moringa oleifera: A review of the medicinal evidence for its nutritional, therapeutic and prophylactic properties. Part 1. Trees Life Journal, 47, 123–157.

    Google Scholar 

  12. Bolin, C., & andSatyabrat, G. . (2011). Antibacterial activity of the methanolic extract of stem bark of Spondias pinnata, Moringa oleifera and Alstonia scholaris. Asian Journal of Traditional Medicines, 6, 163–167.

    Google Scholar 

  13. Caceres, A., Saravia, A., Rizzo, S., Zabala, L., Leon, E. D., & Nave, F. (1992). Pharmacologic properties of Moringa oleifera 2: Screening for antispasmodic, anti-inflammatory and diuretic activity. Journal of Ethnopharmacology, 36, 233–237.

    Article  CAS  PubMed  Google Scholar 

  14. Mughal, M. H., Ali, G., Srivastava, P. S., & Iqbal, M. (1999). Improvement of drumstick [Moringa pterygosperma Gaertn.] – a unique source of food and medicine through tissue culture. Hamdard Medcus, 42, 37–42.

    Google Scholar 

  15. Goyal, B. R., Agrawal, B. B., Goyal, R. K., & Mehta, A. A. (2007). Phyto-pharmacology of Moringa oleifera Lam. ὀ. An overview. Natural Product Radiance, 6, 347–353.

    Google Scholar 

  16. Shapiro, G. I. (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. Journal of Clinical Oncology, 24, 1770–1783.

    Article  CAS  PubMed  Google Scholar 

  17. Arora, D. S., & Kaur, N. (2019). Antimicrobial potential of fungal endophytes from Moringa oleifera. Applied Biochemistry and Biotechnology, 18, 628–648.

    Article  Google Scholar 

  18. Militao, G. C. G., Danta, I. N. F., Pessoa, C., Falcão, M. J. C., Silveira, E. R., Lima, M. A. S., Curi, R., Lima, T., Moraes, M. O., & Costa-Lotufo, L. V. (2006). Induction of apoptosis by pterocarpans from Platymiscium floribundum in HL-60 human leukemia cells. Life Sciences, 78, 2409–2417.

    Article  CAS  PubMed  Google Scholar 

  19. Zheng, L., Wang, X., Luo, W., Zhan, Y., & Zhang, Y. (2013). Brucine, an effective natural compound derived from nux-vomica, induces G1 phase arrest and apoptosis in LoVo cells. Food and Chemical Toxicology, 58, 332–339.

    Article  CAS  PubMed  Google Scholar 

  20. Remesh, A. (2017). Toxicities of anticancer drugs and its management. International Journal of Basic and Clinical Pharmacology, 1, 2–12.

    Article  Google Scholar 

  21. Nascimento do, A. M., Conti, R., Turatti, I. C., Cavalcanti, B. C., Costa-Lotufo, L. V., Pessoa, C., Moraes, M. O., Manfrim, V., Toledo, J. S., Cruz, A. K., & Pupo, M. T. (2012). Bioactive extracts and chemical constituents of two endophytic strains of Fusarium oxysporum. Rev Bras Farmacogn, 22, 1276–81.

    Article  Google Scholar 

  22. Zhan, J., Burns, A. M., Liu, M. X., Faeth, S. H., & Gunatilaka, A. L. (2007). Search for cell motility and angiogenesis inhibitors with potential anticancer activity: Beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. Journal of Natural Products, 70, 227–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaur, N., Arora, D. S., Kalia, N., & Kaur, M. (2020). Antibiofilm, antiproliferative, antioxidant and antimutagenic activities of an endophytic fungus Aspergillus fumigatus from Moringa oleifera. Molecular Biology Reports, 47, 2901–2911.

    Article  CAS  PubMed  Google Scholar 

  24. Kaur, N., Arora, D. S., Kalia, N., & Kaur, M. (2020). Bioactive potential of endophytic fungus Chaetomium globosum and GC–MS analysis of its responsible components. Scientific Reports, 10, 1–10.

    Article  Google Scholar 

  25. Zhu, M., Zhang, X., Feng, H., Dai, J., Li, J., Che, Q., Gu, Q., Zhu, T., & Li, D. (2017). Penicisulfuranols A-F, alkaloids from the mangrove endophytic fungus Penicillium janthinellum HDN13-309. Journal of Natural Products, 80, 71–75.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Y. H., Feng, J. T., Zhang, Q., & Zhang, X. (2008). Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology. Journal of Applied Microbiology, 104, 735–744.

    Article  CAS  PubMed  Google Scholar 

  27. Gerl, R., & Vaux, D. L. (2005). Apoptosis in the development and treatment of cancer. Carcinogenesis, 26, 263–270.

    Article  CAS  PubMed  Google Scholar 

  28. Pharamat, T., Palaga, T., Piapukiew, J., Whalley, A. J., & Sihanonth, P. (2013). Antimicrobial and anticancer activities of endophytic fungi from Mitragyna javanica Koord and Val. African Journal of Microbiological Research, 7, 5565–5572.

    Article  Google Scholar 

  29. Radha, G., & Raghavan, S. C. (2017). BCL2: A promising cancer therapeutic target. BBA - Reviews on Cancer, 1868, 309–314.

    CAS  PubMed  Google Scholar 

  30. Chan, W. H., & Yu, J. S. (2000). Inhibition of UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermal carcinoma A431 cells by genistein. Journal of Cellular Biochemistry, 78, 73–84.

    Article  CAS  PubMed  Google Scholar 

  31. Hug, H., Strand, S., Grambihler, A., Galle, J., Hack, V., Stremmel, W., Krammer, P. H., & Galle, P. R. (1997). Reactive oxygen intermediates are involved in the induction of CD95 ligand mRNA expression by cytostatic drugs in hepatoma cells. Journal of Biological Chemistry, 272, 28191–28193.

    Article  CAS  PubMed  Google Scholar 

  32. Serrano, J., Palmeira, C. M., Kuehl, D. W., & Wallace, K. B. (1999). Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1411, 201–205.

    Article  CAS  Google Scholar 

  33. Murray, A. W. (2004). Recycling the cell cycle: Cyclins revisited. Cell, 116, 221–234.

    Article  CAS  PubMed  Google Scholar 

  34. Torres, K., & Horwitz, S. B. (1998). Mechanisms of taxol-induced cell death are concentration dependent. Cancer Research, 58, 3620–3626.

    CAS  PubMed  Google Scholar 

  35. Zhao, L., Chen, Z., Wang, J., Yang, L., Zhao, Q., Wang, J., Qi, Q., Mu, R., You, Q. D., & Guo, Q. L. (2010). Synergistic effect of 5-fluorouracil and the flavanoidoroxylin A on HepG2 human hepatocellular carcinoma and on H22 transplanted mice. Cancer Chemotherapy and Pharmacology, 65, 481–489.

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi, L. F., Vassão, D. G., Kato, M. J., & Di Mascio, P. (2005). Biflavonoids from Brazilian pine Araucaria angustifolia as potentials protective agents against DNA damage and lipoperoxidation. Phytochemistry, 66, 2238–2247.

    Article  CAS  PubMed  Google Scholar 

  37. Soumya, K., Haridas, K. R., James, J., Sameer Kumar, V. B., Edatt, L., & Sudheesh, S. (2019). Study of In vitro antioxidant and DNA damage protection activity of a novel luteolin derivative isolated from Terminalia chebula. Journal of Taibah University for Science, 13, 755–763.

    Article  Google Scholar 

Download references

Acknowledgements

The grant provided in the form of Major Research Project (MRP) sanctioned to Prof. (Dr.) Daljit Singh Arora by UGC, New Delhi is duly acknowledged, as well as the financial support to the department in the form SAP, DST Purse etc. is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daljit Singh Arora.

Ethics declarations

Ethics Approval

Not applicable.

Informed Consent

This article does not contain any studies with human participants, so the consent to participate is not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 528 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Arora, D.S., Kaur, S. et al. Antiproliferative and Oxidative Damage Protection Activities of Endophytic Fungi Aspergillus fumigatus and Chaetomium globosum from Moringa oleifera Lam.. Appl Biochem Biotechnol 193, 3570–3585 (2021). https://doi.org/10.1007/s12010-021-03625-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03625-6

Keywords

Navigation