Skip to main content
Log in

Near Isometric Terminal Embeddings for Doubling Metrics

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a metric space (Xd), a set of terminals \(K\subseteq X\), and a parameter \(0<\epsilon <1\), we consider metric structures (e.g., spanners, distance oracles, embedding into normed spaces) that preserve distances for all pairs in \(K\times X\) up to a factor of \(1+\epsilon\), and have small size (e.g. number of edges for spanners, dimension for embeddings). While such terminal (aka source-wise) metric structures are known to exist in several settings, no terminal spanner or embedding with distortion close to 1, is currently known. Here we devise such terminal metric structures for doubling metrics, and show that essentially any metric structure with distortion \(1+\epsilon\) and space s(|X|) has its terminal counterpart, with distortion \(1+O(\epsilon )\) and space \(s(|K|)+n\). In particular, for any doubling metric on n points, a set of k terminals, and constant \(0<\epsilon <1\), there exists

  • A spanner with stretch \(1+\epsilon\) for pairs in \(K\times X\), with \(n+O(k)\) edges.

  • A labeling scheme with stretch \(1+\epsilon\) for pairs in \(K\times X\), with label size \(\approx \log k\).

  • An embedding into \(\ell _\infty ^d\) with distortion \(1+\epsilon\) for pairs in \(K\times X\), where \(d=O(\log k)\).

Moreover, surprisingly, the last two results apply if only the metric space on K is doubling, while the metric on X can be arbitrary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. By “high-dimensional” we mean here typically dimension \(\log n\) or greater.

  2. See [32] for definition of tree-width.

  3. For the last two results, we note that our proof provides \(Y\supseteq K\) satisfying \(\Delta _Y\le O(\Delta _K/\epsilon ^4)\), on which we apply the labeling scheme of [33], or the embedding of [34].

References

  1. Abboud, Amir., Bodwin, Greg.: Reachability preservers: New extremal bounds and approximation algorithms. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1865–1883, 2018

  2. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Dis. Comput. Geom. 9, 81–100 (1993)

    Article  MathSciNet  Google Scholar 

  3. Assouad, P.: Plongements lipschitziens dans \(\mathbb{R}^n\). Bull. Soc. Math. France 111(4), 429–448 (1983)

    Article  MathSciNet  Google Scholar 

  4. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: Proceedings of the 37th IEEE Symp. on Foundations of Computer Science, pp. 184–193, 1996

  5. Bourgain, J.: On lipschitz embedding of finite metric spaces in hilbert space. Israel J. Math. 52(1–2), 46–52 (1985)

    Article  MathSciNet  Google Scholar 

  6. Chandra, Barun., Das, Gautam., Narasimhan, Giri., Soares, José.: New sparseness results on graph spanners. In: Proc. of 8th SOCG, pp. 192–201, 1992

  7. Coppersmith, D., Elkin, M.: Sparse source-wise and pair-wise distance preservers. In: SODA: ACM-SIAM Symposium on Discrete Algorithms, pp. 660–669, 2005

  8. Chan, T-H. Hubert., Gupta, Anupam.: Small hop-diameter sparse spanners for doubling metrics. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06, pp. 70–78, Philadelphia, PA, USA, 2006. Society for Industrial and Applied Mathematics

  9. Cygan, Marek., Grandoni, Fabrizio., Kavitha, Telikepalli.: On pairwise spanners. In: 30th International Symposium on Theoretical Aspects of Computer Science, STACS 2013, February 27–March 2, 2013, Kiel, Germany, pp. 209–220, 2013

  10. Chan, T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in doubling metrics. ACM Trans. Algorithms 12(4), 55:1-55:22 (2016). (12(4):55:1–55:22)

    MathSciNet  MATH  Google Scholar 

  11. Chan, T.-H., Li, M., Ning, L., Solomon, S.: New doubling spanners: better and simpler. SIAM J. Comput. 44(1), 37–53 (2015)

    Article  MathSciNet  Google Scholar 

  12. Das, Gautam., Heffernan, Paul J., Narasimhan, Giri.: Optimally sparse spanners in 3-dimensional euclidean space. In: Proceedings of the Ninth Annual Symposium on Computational GeometrySan Diego, CA, USA, May 19-21, 1993, pp. 53–62, 1993

  13. Elkin, Michael., Filtser, Arnold., Neiman, Ofer.: Prioritized metric structures and embedding. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14–17, 2015, pp. 489–498, 2015

  14. Elkin, Michael, Filtser, Arnold, Neiman, Ofer: Terminal embeddings. Theor. Comput. Sci. 697, 1–36 (2017)

    Article  MathSciNet  Google Scholar 

  15. Elkin, M., Solomon, S.: Optimal euclidean spanners: really short, thin, and lanky. J. ACM 62(5), 35:1-35:45 (2015)

    Article  MathSciNet  Google Scholar 

  16. Gao, Jie, Guibas, Leonidas J., Nguyen, An.: Deformable spanners and applications. Comput. Geom. Theory Appl. 35(1–2), 2–19 (2006)

    Article  MathSciNet  Google Scholar 

  17. Gupta, Anupam., Krauthgamer, Robert., Lee, James R.: Bounded geometries, fractals, and low-distortion embeddings. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’03, pp.534–, Washington, DC, USA, 2003. IEEE Computer Society

  18. Gottlieb, Lee-Ad.: a light metric spanner. In: Proc. of 56th FOCS, pp.759–772, 2015

  19. Gottlieb, Lee-Ad., Roditty, Liam.: An optimal dynamic spanner for doubling metric spaces. In: Algorithms —ESA 2008, 16th Annual European Symposium, Karlsruhe, Germany, September 15-17, 2008. Proceedings, pp. 478–489, 2008

  20. Har-Peled, Sariel, Mendel, Manor: Fast construction of nets in low-dimensional metrics and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

    Article  MathSciNet  Google Scholar 

  21. Johnson, William., Lindenstrauss, Joram.: Extensions of Lipschitz mappings into a Hilbert space. In: Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemporary Mathematics, pp. 189–206. American Mathematical Society, 1984

  22. Kavitha, Telikepalli.: New pairwise spanners. In: 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, pp. 513–526, 2015

  23. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)

    Article  MathSciNet  Google Scholar 

  24. Matoušek, J.: On the distortion required for embeding finite metric spaces into normed spaces. Israel J. Math. 93, 333–344 (1996)

    Article  MathSciNet  Google Scholar 

  25. Matousek, Jiri: Lectures on Discrete Geometry. Springer, New York (2002)

    Book  Google Scholar 

  26. Mahabadi,Sepideh., Makarychev, Konstantin., Makarychev, Yury., Razenshteyn, Ilya P.: Nonlinear dimension reduction via outer bi-lipschitz extensions. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pp. 1088–1101, 2018

  27. Mendel, Manor, Naor, Assaf: Ramsey partitions and proximity data structures. J. Eur. Math. Soc. 9(2), 253–275 (2007)

    Article  MathSciNet  Google Scholar 

  28. Neiman, Ofer: Low dimensional embeddings of doubling metrics. Theory Comput. Syst. 58(1), 133–152 (2016)

    Article  MathSciNet  Google Scholar 

  29. Narayanan, Shyam., Nelson, Jelani.: Optimal terminal dimensionality reduction in euclidean space. CoRR, abs/1810.09250, 2018

  30. Narasimhan, Giri, Smid, Michiel: Geometric Spanner Networks. Cambridge University Press, New York (2007)

    Book  Google Scholar 

  31. Parter, Merav., Bypassing erdős’ girth conjecture: Hybrid stretch and sourcewise spanners. In: Automata, Languages, and Programming—41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8–11, 2014, Proceedings, Part II, pp. 608–619, 2014

  32. Robertson, N., Seymour, P.D.: Graph minors: X. obstructions to tree-decomposition. J. Comb. Theory Ser. B 52(2), 153–190 (1991)

    Article  MathSciNet  Google Scholar 

  33. Slivkins, Aleksandrs: Distance estimation and object location via rings of neighbors. Distrib. Comput. 19(4), 313–333 (2007)

    Article  Google Scholar 

  34. Talwar, Kunal.: Bypassing the embedding: Algorithms for low dimensional metrics. In: Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC ’04, pp. 281–290, New York, NY, USA, 2004. ACM

Download references

Acknowledgements

We are grateful to Paz Carmi for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Neiman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appears in SOCG’18

This research was supported by the ISF Grant No. (2344/19)

Supported in part by the ISF Grant 1817/17 and BSF grant 2015813.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkin, M., Neiman, O. Near Isometric Terminal Embeddings for Doubling Metrics. Algorithmica 83, 3319–3337 (2021). https://doi.org/10.1007/s00453-021-00843-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-021-00843-6

Navigation