Skip to main content
Log in

Evaluation of cell wall-associated direct extracellular electron transfer in thermophilic Geobacillus sp.

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, a cell wall-associated extracellular electron transfer (EET) was determined in the thermophilic Geobacillus sp. to utilize iron as a terminal electron acceptor. The direct extracellular transfer of its electrons was primarily linked to the cell wall cytochrome-c and diffusible redox mediators like flavins during the anoxic condition. Based on the azo dye decolouration and protein film voltammetry, it was revealed that, in the absence of surface polysaccharide and diffusible mediators, the cell wall-associated EET pathway was likely to be a favorable mechanism in Geobacillus sp. Since the permeability of such redox molecule is primarily limited to the cell wall, the electron transfer occurs by direct contact with cell wall-associated cytochrome and final electron acceptor. Furthermore, transfer of electrons with the help of redox shuttling molecules like riboflavin from cytochrome to cells, vice versa indicates that Geoabcillus sp. has adopted this unique pathway during an anoxic environment for its respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson LJ, Richardson DJ, Butt JN (2001) Catalytic protein film voltammetry from a respiratory nitrate reductase provides evidence for complex electrochemical modulation of enzyme activity. Biochemistry 40:11294–11307

    Article  CAS  PubMed  Google Scholar 

  • Bae S, Lee W (2013) Biotransformation of lepidocrocite in the presence of quinones and flavins. Geochim Cosmochim Acta 114:144–215

    Article  CAS  Google Scholar 

  • Balasubramanian R, Levinson BT, Rosenzweig AC (2010) Secretion of flavins by three species of methanotrophic bacteria. Appl Environ Microbiol 76:7356–7358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartzatt R, Wol T (2014) Detection and assay of Vitamin B-2 (Riboflavin) in alkaline borate buffer with UV/Visible spectrophotometry. Int Sch Res Notices 2014:Article ID 453085

  • Berry EA, Trumpower BL (1987) Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem 161:1–15

    Article  CAS  PubMed  Google Scholar 

  • Bird LJ, Bonnefoy V, Newman DK (2011) Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol 19:330–340

    Article  CAS  PubMed  Google Scholar 

  • Brutinel ED, Gralnick JA (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48

    Article  PubMed  CAS  Google Scholar 

  • Carlson HK, Iavarone AT, Gorur A, Yeo BS, Tran R, Melnyk RA, Mathies RA, Auer M, Coates JD (2012) Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc Natl Acad Sci USA 109:1702–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole JN, Djordjevic SP, Walker MJ (2008) Isolation and solubilization of gram-positive bacterial cell wall-associated proteins. In: Posch A (ed) 2D PAGE: sample preparation and fractionation. Humana Press, Totowa, pp 295–311. https://doi.org/10.1007/978-1-60327-210-0_24

    Chapter  Google Scholar 

  • Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G (2011) Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci USA 108:15248–15252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192:467–474

    Article  CAS  PubMed  Google Scholar 

  • Dalla Vecchia E, Shao PP, Suvorova E, Chiappe D, Hamelin R, Bernier-Latmani R (2014) Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens. Front Microbiol 5:432

    Article  PubMed  PubMed Central  Google Scholar 

  • DE Dana JD, Gaines RV (1997) Dana’s new mineralogy: the system of mineralogy of James Dwight Dana and Edward Salisbury Dana, 8th edn. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Faustino MM, Fonseca BM, Costa NL, Lousa D, Louro RO, Paquete CM (2021) Crossing the wall: characterization of the multiheme cytochromes involved in the extracellular electron transfer pathway of Thermincola ferriacetica. Microorganisms 9:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes AP, Nunes TC, Paquete CM, Salgueiro CA (2017) Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of Geobacter sulfurreducens. Biochem J 474:797–808

    Article  CAS  PubMed  Google Scholar 

  • Fuller SJ, McMillan DGG, Renz MB, Schmidt M, Burke IT, Stewart DI (2014) Extracellular electron transport-mediated Fe(III) reduction by a community of alkaliphilic bacteria that use flavins as electron shuttles. Appl Environ Microbiol 80:128–137. https://doi.org/10.1128/aem.02282-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Angulo VA (2017) Overlapping riboflavin supply pathways in bacteria. Crit Rev Microbiol 43:196–209

    Article  PubMed  CAS  Google Scholar 

  • Gavrilov SN, Zavarzina DG, Elizarov IM, Tikhonova TV, Dergousova NI, Popov VO, Lloyd JR, Knight D, El-Naggar MY, Pirbadian S, Leung KM, Robb FT, Zakhartsev MV, Bretschger O, Bonch-Osmolovskaya EA (2021) Novel extracellular electron transfer channels in a gram-positive thermophilic bacterium. Front Microbiol 11:597818

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurav R, Bhatia SK, Choi TR, Kim HJ, Song HS, Park SL, Lee SM, Lee HS, Kim SH, Yoon JJ, Yang YH (2020) Utilization of different lignocellulosic hydrolysates as carbon source for electricity generation using novel Shewanella marisflavi BBL25. J Clean Prod 277:124084

    Article  CAS  Google Scholar 

  • Gurumurthy DM, Neelagund SE (2010) Geobacillus sp. Iso 5, a novel amylase-producing thermophile from thermal springs in Konkan region of Southern. Indian J Earth Sci 21:319–322

    Article  CAS  Google Scholar 

  • Gurumurthy DM, Bharagava RN, Kumar A, Singh B, Ashfaq M, Saratale GD, Mulla SI (2019) EPS bound flavins driven mediated electron transfer in thermophilic Geobacillus sp. Microbiol Res 229:126324

    Article  CAS  PubMed  Google Scholar 

  • Hartshorne RS et al (2007) Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. J Biol Inorg Chem 12:1083–1094

    Article  CAS  PubMed  Google Scholar 

  • Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58:1562–1571

    Article  CAS  PubMed  Google Scholar 

  • Hess V, Poehlein A, Weghoff MC, Daniel R, Müller V (2014) A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. BMC Genomics 15:1139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holmes DE, Dang Y, Walker DJF, Lovley DR (2016) The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microb Genom 2:000072

    Google Scholar 

  • Kotloski NJ, Gralnick JA (2013) Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. Mbio 4:e00553-e1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kracke F, Vassilev I, Krömer JO (2015) Microbial electron transport and energy conservation—the foundation for optimizing bioelectrochemical systems. Front Microbiol 6:575

    Article  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Leang C, Coppi MV, Lovley DR (2003) OmcB, a c-Type Polyheme Cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 185:2096–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  • Lusk BG (2019) Thermophiles; or, the Modern Prometheus: the importance of extreme microorganisms for understanding and applying extracellular electron transfer. Front Microbiol 10:818

    Article  PubMed  PubMed Central  Google Scholar 

  • Lusk BG, Khan QF, Parameswaran P, Hameed A, Ali N, Rittmann BE, Torres CI (2015) Characterization of Electrical current-generation capabilities from thermophilic bacterium Thermoanaerobacter pseudethanolicus using xylose, glucose, cellobiose, or acetate with fixed anode potentials. Environ Sci Technol 49:14725–14731

    Article  CAS  PubMed  Google Scholar 

  • Lusk BG, Parameswaran P, Popat SC, Rittmann BE, Torres CI (2016) The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica. Bioelectrochemistry 112:47–52

    Article  CAS  PubMed  Google Scholar 

  • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan SV, Velvizhi G, Krishna KV, Babu ML (2014) Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. Bioresour Technol 165:355–364

    Article  CAS  Google Scholar 

  • Moody MD, Dailey HA (1983) Aerobic ferrisiderophore reductase assay and activity stain for native polyacrylamide gels. Anal Biochem 134:235–239

    Article  CAS  PubMed  Google Scholar 

  • Mulla SI, Wang H, Sun Q, Hu A, Yu CP (2016) Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C. Sci Rep 6:21965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174:3429–3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevin KP, Lovley DR (2002) Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19:141–159

    Article  CAS  Google Scholar 

  • Parameswaran P, Bry T, Popat SC, Lusk BG, Rittmann BE, Torres CI (2013) Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica. Environ Sci Technol 47:4934–4940

    Article  CAS  PubMed  Google Scholar 

  • Popova NA, Nikolaev YA, Tourova TP, Lysenko AM, Osipov GA, Verkhovtseva NV, Panikov NS (2002) Geobacillus uralicus, a new species of thermophilic bacteria. Microbiology 71:335–341

    Article  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Schicklberger M, Gescher J (2012) Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78:913–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Belchik SM, Plymale AE, Heald S, Dohnalkova AC, Sybirna K, Bottin H, Squier TC, Zachara JM, Fredrickson JK (2011) Purification and Characterization of the [NiFe]-Hydrogenase of Shewanella oneidensis MR-1. Appl Environ Microbiol 77:5584–5590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas PE, Ryan D, Levin W (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75:168–176

    Article  CAS  PubMed  Google Scholar 

  • Tokunou Y, Hashimoto K, Okamoto A (2016) Acceleration of extracellular electron transfer by alternative redox-active molecules to riboflavin for outer-membrane cytochrome c of Shewanella oneidensis MR-1. J Phys Chem C 120:16168–16173

    Article  CAS  Google Scholar 

  • Torres CI, Marcus AK, Lee H-S, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17

    Article  CAS  PubMed  Google Scholar 

  • von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Article  CAS  Google Scholar 

  • Wall JD, Krumholz LR (2006) Uranium Reduction. Annu Rev Microbiol 60:149–166

    Article  CAS  PubMed  Google Scholar 

  • White GF, Shi Z, Shi L, Wang Z, Dohnalkova AC, Marshall MJ, Fredrickson JK, Zachara JM, Butt JN, Richardson DJ, Clarke TA (2013) Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proc Natl Acad Sci U S A 110:6346–6351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Xiao Y, Wang L, Zheng Y, Chang K, Zheng Z, Yang Z, Varcoe JR, Zhao F (2014) Extracellular electron transfer mediated by flavins in gram-positive Bacillus sp. WS-XY1 and Yeast Pichia stipitis. Electrochim Acta 146:564–567

    Article  CAS  Google Scholar 

  • Wu S, Xiao Y, Song P, Wang C, Yang Z, Slade RCT, Zhao F (2016) Riboflavin-mediated extracellular electron transfer process involving Pachysolen tannophilus. Electrochim Acta 210:117–121

    Article  CAS  Google Scholar 

  • Zhao F, Gurumurthy DM. 2016. Chapter 16—Resources recovery from wastewater based on extracellular electron transfer. In: Environmental materials and waste. Academic Press, pp 391–412. https://doi.org/10.1016/B978-0-12-803837-6.00016-0

  • Zhao J, Li F, Cao Y, Zhang X, Chen T, Song H, Wang Z (2020) Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2020.107682

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank Dr. Shivayogeeswar Neelagund, Associate Professor, Department of Biochemistry, Kuvempu University, for his constant support throughout the process. DMG would like to thank all colleagues from the Department of Biotechnology, GM Institute of Technology, Davangere. SIM would like to thank all colleagues from the Department of Biochemistry, School of Applied Science, REVA University, Bangalore.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

DMG and SIM conceived and designed the study. DMG and SIM performed experimental works. DMG, LFRF, AK, GDS, MB, SKG and SIM analyzed the data. DMG, VDR and SIM wrote the paper. GDS, UG, MB, and SKG helped to revise the final draft. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dummi Mahadevan Gurumurthy or Sikandar I. Mulla.

Ethics declarations

Conflict of interest

The authors ensure no conflict of interest exist.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 104 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurumurthy, D.M., Bilal, M., Nadda, A.K. et al. Evaluation of cell wall-associated direct extracellular electron transfer in thermophilic Geobacillus sp.. 3 Biotech 11, 383 (2021). https://doi.org/10.1007/s13205-021-02917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02917-2

Keywords

Navigation