Skip to main content
Log in

Mathematical Substantiation of Pulsed Electromagnetic Soundings for New Problems of Petroleum Geophysics

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper is devoted to the development of a fundamental theory and the creation of algorithms and software for pulsed electromagnetic soundings to study an unconventional source of hydrocarbons with hard-to-recover reserves — the Bazhenov formation. A new geophysical technology for the localization of oil-prospective zones using a spatially distributed system of highly deviated and horizontal wells is mathematically substantiated. To perform a fast mathematical simulation, a solution is obtained to the problem of pulsed electromagnetic soundings in layered homogeneous models of media for an arbitrary current pulse in an electromagnetic field source. This solution allows deep parallelization. Based on the thus created computational algorithm, a parallel algorithm and a fast computer program are developed for the numerical simulation of the signals of a new system on the multiprocessor computers of the Siberian Supercomputer Center of SB RAS. A large-scale numerical simulation and analysis of the signals in realistic geoelectric models of the Bazhenov formation are performed to determine the scope of application of the new pulsed electromagnetic sounding setup. The calculations show that the spatial locations of the formation boundaries can be determined in well logging over a wide range of sonde spacing. We analyze the applicability of the diagonal and off-diagonal field components to ensure high sensitivity of mapping to the reservoir boundaries and evaluating its internal heterogeneities. The results form a basis for the design of the optimal configuration of a new electromagnetic sounding system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Braduchan, Yu.V., Bulynnikova, S.P., Vyachkileva, N.P., Golbert, A.V., Gurari, F.G., et al., The Bazhenov Horizon of Western Siberia: Stratigraphy, Paleogeography, Ecosystem, and Oil-Bearing Capacity,Trudy IGiG SO AN SSSR (Proc. IG&G SB Akad. Sci. SSSR), Novosibirsk: Nauka, 1986, no. 649.

  2. Gurari, F.G., On the Search for Oil and Gas in the Mesozoic of the West Siberian Lowland, Trudy SNIIGGiMS (Proc. Siberian Research Institute of Geology, Geophysics and Mineral Resources) Leningrad: Gostoptekhizdat, 1961, no. 17, pp. 81–92.

  3. Kontorovich, A.E., Berman, E.L., Bogorodskaya L.I., et al., Geochemistry of Jurassic and Lower Cretaceous Deposits of the West Siberian Lowland, Trudy SNIIGGiMS. Ser. Neft. Geol.(Proc. Siberian Research Institute of Geology, Geophysics and Mineral Resources. Ser. Petroleum Geology), Moscow: Nedra, 1971, no. 36.

  4. Epov, M.I., Glinskikh, V.N., Petrov, A.M., et al., Frequency Dispersion of Electrophysical Characteristics and Resistivity Anisotropy of the Bazhenov Formation Deposits according to Resistivity Logging Data, Neft. Khoz., 2019, no. 9, pp. 62–64.

    Article  Google Scholar 

  5. Epov, M.I., Shurina, E.P., and Arhipov, D.A., Parallel Numerical Finite Elements Schemes for Solving of Geo-Electric Problems,Vych. Tekhnol., 2013, vol. 18, no. 2, pp. 95–112.

    Google Scholar 

  6. Glinskiy, B.M., Kostin, V.I., Kuchin, N.V., Solovyev, S.A., and Cheverda, V.A., Aspects of Parallel Computing to Solve Helmholtz Equation by a Direct Solver with Low-Rank Approximation and the HSS Format of Data Storage, Num. Meth. Prog., 2015, vol. 16, no. 4, pp. 607–616.

    Google Scholar 

  7. Kostin, V.I., Reshetova, G.V., and Tcheverda, V.A., Parallel Numerical Simulation of 3D Acoustic Logging, Mat. Model., 2008, vol. 20, no. 9, pp. 51–67.

    MATH  Google Scholar 

  8. Belonosov, M.A., Kostov, C., Reshetova, G.V., et al., Parallel Numerical Simulation of Seismic Waves Propagation with Intel Math Kernel Library, Lect. Notes Comp. Sci., Appl. Parallel Scientific Computing, 2013, vol. 7782, pp. 153–167.

    Article  Google Scholar 

  9. Puzyrev, V., Koric, S., and Wilkin, S., Evaluation of Parallel Direct Sparse Linear Solvers in Electromagnetic Geophysical Problems,Comp. Geosci., 2016, vol. 89, pp. 79–87.

    Article  Google Scholar 

  10. Urev, M.V., Convergence of a Discrete Scheme in a Regularization Method for the Quasi-Stationary Maxwell System in a Non-Homogeneous Conducting Medium, Sib. Zh. Vych. Mat., 2011, vol. 14, no. 3, pp. 319–32.

    MATH  Google Scholar 

  11. Tabarovskii, L.A., Primeneniye metoda integral’nykh uravneniy v zadachakh geoelektriki (Application of the Method of Integral Equations in Problems of Geoelectrics), Novosibirsk: Nauka, 1975.

  12. Kaufman, A.A. and Morozova, G.M., Teoreticheskiye osnovy metoda zondirovaniy stanovleniyem polya v blizhney zone(Theoretical Foundations of the Method of Sounding by the Formation of a Field in the Near Zone), Novosibirsk: Nauka, 1970.

  13. Il’in, V.P., On the Numerical Solution of Direct and Inverse Problems of Geoelectromagnetic Exploration, Sib. Zh. Vych. Mat., 2003, vol. 6, no. 4, pp. 381–394.

    MATH  Google Scholar 

  14. Kabanikhin, S., Inverse and Ill-Posed Problems: Theory and Applications, Ser. 55, Berlin: De Gruyter, 2011.

    Book  Google Scholar 

  15. Vladimirov, V.S., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1981.

  16. Kaufman, A.A. and Sokolov, V.P., Teoriya induktsionnogo karotazha metodom perekhodnykh protsessov (Theory of Transient Induction Logging), Novosibirsk: Nedra, 1972.

  17. Svetov, B.S., Elektrodinamicheskiye osnovy kvazistatsionarnoy geoelektriki (Electrodynamic Foundations of Quasi-Stationary Geoelectrics), Moscow: IZMIRAN, 1984.

  18. Mogilatov, V.S. and Potapov, V.V., Universal Software for Induction Logging, Karotazhnik, 2014, vol. 246, no. 12, pp. 76–90.

    Google Scholar 

  19. Lavrent’ev, M.A. and Shabat, B.V., Metody teorii funktsii kompleksnogo peremennogo (Methods of the Theory of Functions of a Complex Variable), Moscow: Nedra, 1973.

  20. Nikitenko, M., Itskovich, G., and Seryakov, A., Fast Electromagnetic Modeling in Cylindrically Layered Media Excited by Eccentred Magnetic Dipole, Radio Sci., 2016, vol. 51, no. 6, pp. 573–588.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. N. Nikitenko, V. N. Glinskikh or D. I. Gornostalev.

Additional information

Translated from Sibirskii Zhurnal Vychislitel’noi Matematiki, 2021, Vol. 24, No. 2, pp. 179–192.https://doi.org/10.15372/SJNM20210205.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitenko, M.N., Glinskikh, V.N. & Gornostalev, D.I. Mathematical Substantiation of Pulsed Electromagnetic Soundings for New Problems of Petroleum Geophysics. Numer. Analys. Appl. 14, 155–166 (2021). https://doi.org/10.1134/S1995423921020051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423921020051

Keywords

Navigation