Skip to main content
Log in

Oxidative dry reforming of methane over a nickel–alumina catalyst for carbon free operation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A nickel–alumina catalyst, possessing strong metal-support interaction, showed significant CH4 and CO2 conversions at 600 °C and 750 °C for the dry reforming of methane (DRM). However, about 33% carbon-whiskers (at 600 °C) and less than 1% carbon (at 750 °C) was deposited after 4 h of DRM. Adding up to 7.5 V% O2 during the partial oxidation of methane (POM), and during the oxidative dry reforming of methane (ODRM), increased the CH4 conversion. At least 7.5% O2 was required for “carbon-free” ODRM operation (carbon < 1%) even at a reaction temperature of 600 °C. Furthermore, the CH4 conversion increased from 44 to 52% at 600 °C, and from 85 to 88% at 750 °C. A H2/CO ratio of 0.82 (at 600 °C) and 0.72 (at 750 °C) was also achieved. Increasing the O2 amount also decreased the net CO2 conversion and both carbon-types in the spent catalyst. Unexpectedly, the fraction of metallic nickel sites decreased in the spent catalyst after ODRM though the conversions increased. Thus, syngas is produced with insignificant amounts of carbon at 600 °C and 750 °C by DRM using small amounts of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information file].

References

  1. Bhavani AG, Kim WY, Lee JS (2013) Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catal 3:1537–1544. https://doi.org/10.1021/cs400245m

    Article  CAS  Google Scholar 

  2. Bepari S, Li X, Abrokwah R et al (2020) Co-Ru catalysts with different composite oxide supports for Fischer–Tropsch studies in 3D-printed stainless steel microreactors. Appl Catal A Gen 608:117838. https://doi.org/10.1016/j.apcata.2020.117838

    Article  CAS  Google Scholar 

  3. Buis A (2019) The atmosphere: getting a handle on carbon dioxide. https://climate.nasa.gov/news/2915/the-atmosphere-getting-a-handle-on-carbon-dioxide/. Accessed 18 Jan 2021

  4. Tathod AP, Hayek N, Shpasser D et al (2019) Mediating interaction strength between nickel and zirconia using a mixed oxide nanosheets interlayer for methane dry reforming. Appl Catal B Environ 249:106–115. https://doi.org/10.1016/j.apcatb.2019.02.040

    Article  CAS  Google Scholar 

  5. Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43:7813–7837. https://doi.org/10.1039/C3CS60395D

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Yao L, Wang S et al (2018) Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: a review. Fuel Process Technol 169:199–206. https://doi.org/10.1016/j.fuproc.2017.10.007

    Article  CAS  Google Scholar 

  7. Jang WJ, Shim JO, Kim HM et al (2019) A review on dry reforming of methane in aspect of catalytic properties. Catal Today 324:15–26. https://doi.org/10.1016/j.cattod.2018.07.032

    Article  CAS  Google Scholar 

  8. Tsyganok AI, Inaba M, Tsunoda T et al (2004) Combined partial oxidation and dry reforming of methane to synthesis gas over noble metals supported on Mg–Al mixed oxide. Appl Catal A Gen 275:149–155. https://doi.org/10.1016/j.apcata.2004.07.030

    Article  CAS  Google Scholar 

  9. Wang F, Han B, Zhang L et al (2018) CO 2 reforming with methane over small-sized Ni@SiO2 catalysts with unique features of sintering-free and low carbon. Appl Catal B Environ 235:26–35. https://doi.org/10.1016/j.apcatb.2018.04.069

    Article  CAS  Google Scholar 

  10. Hadian N, Rezaei M (2013) Combination of dry reforming and partial oxidation of methane over Ni catalysts supported on nanocrystalline MgAl2O4. Fuel 113:571–579. https://doi.org/10.1016/j.fuel.2013.06.013

    Article  CAS  Google Scholar 

  11. Ruckenstein E, Hu YH (1998) Combination of CO2 reforming and partial oxidation of methane over NiO/MgO solid solution catalysts. Ind Eng Chem Res 37:1744–1747. https://doi.org/10.1021/ie9707883

    Article  CAS  Google Scholar 

  12. Siang TJ, Pham TLM, Van CN et al (2018) Combined steam and CO2 reforming of methane for syngas production over carbon-resistant boron-promoted Ni/SBA-15 catalysts. Microporous Mesoporous Mater 262:122–132. https://doi.org/10.1016/j.micromeso.2017.11.028

    Article  CAS  Google Scholar 

  13. Jang W-J, Jeong D-W, Shim J-O et al (2016) Combined steam and carbon dioxide reforming of methane and side reactions: thermodynamic equilibrium analysis and experimental application. Appl Energy 173:80–91. https://doi.org/10.1016/j.apenergy.2016.04.006

    Article  CAS  Google Scholar 

  14. Antzara A, Heracleous E, Lemonidou AA (2016) Energy efficient sorption enhanced-chemical looping methane reforming process for high-purity H2 production: experimental proof-of-concept. Appl Energy 180:457–471. https://doi.org/10.1016/j.apenergy.2016.08.005

    Article  CAS  Google Scholar 

  15. Kang D, Lim HS, Lee M, Lee JW (2018) Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane. Appl Energy 211:174–186. https://doi.org/10.1016/j.apenergy.2017.11.018

    Article  CAS  Google Scholar 

  16. Tang M, Xu L, Fan M (2015) Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Appl Energy 151:143–156. https://doi.org/10.1016/j.apenergy.2015.04.017

    Article  CAS  Google Scholar 

  17. Nematollahi B, Rezaei M, Khajenoori M (2011) Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts. Int J Hydrogen Energy 36:2969–2978. https://doi.org/10.1016/j.ijhydene.2010.12.007

    Article  CAS  Google Scholar 

  18. Asencios YJO, Assaf EM (2013) Combination of dry reforming and partial oxidation of methane on NiO–MgO–ZrO2 catalyst: effect of nickel content. Fuel Process Technol 106:247–252. https://doi.org/10.1016/j.fuproc.2012.08.004

    Article  CAS  Google Scholar 

  19. Ji H, Feng D, He Y (2010) Low-temperature utilization of CO2 and CH4 by combining partial oxidation with reforming of methane over Ru-based catalysts. J Nat Gas Chem 19:575–582. https://doi.org/10.1016/S1003-9953(09)60117-1

    Article  CAS  Google Scholar 

  20. Yusuf M, Farooqi AS, Keong LK et al (2021) Contemporary trends in composite Ni-based catalysts for CO2 reforming of methane. Chem Eng Sci 229:116072. https://doi.org/10.1016/j.ces.2020.116072

    Article  CAS  Google Scholar 

  21. Li B, Xu X, Zhang S (2013) Synthesis gas production in the combined CO2 reforming with partial oxidation of methane over Ce-promoted Ni/SiO2 catalysts. Int J Hydrogen Energy 38:890–900. https://doi.org/10.1016/j.ijhydene.2012.10.103

    Article  CAS  Google Scholar 

  22. Luisetto I, Sarno C, De Felicis D et al (2017) Ni supported on γ-Al2O3 promoted by Ru for the dry reforming of methane in packed and monolithic reactors. Fuel Process Technol 158:130–140. https://doi.org/10.1016/j.fuproc.2016.12.015

    Article  CAS  Google Scholar 

  23. Ewbank JL, Kovarik L, Diallo FZ, Sievers C (2015) Effect of metal–support interactions in Ni/Al2O3 catalysts with low metal loading for methane dry reforming. Appl Catal A Gen 494:57–67. https://doi.org/10.1016/j.apcata.2015.01.029

    Article  CAS  Google Scholar 

  24. Xu Y, Du X, Li J et al (2019) A comparison of Al2O3 and SiO2 supported Ni-based catalysts in their performance for the dry reforming of methane. J Fuel Chem Technol 47:199–208. https://doi.org/10.1016/S1872-5813(19)30010-6

    Article  CAS  Google Scholar 

  25. Zhou L, Li L, Wei N et al (2015) Effect of NiAl2O4 formation on Ni/Al2O3 stability during dry reforming of methane. ChemCatChem 7:2508–2516. https://doi.org/10.1002/cctc.201500379

    Article  CAS  Google Scholar 

  26. Shang Z, Li S, Li L et al (2017) Highly active and stable alumina supported nickel nanoparticle catalysts for dry reforming of methane. Appl Catal B Environ 201:302–309. https://doi.org/10.1016/j.apcatb.2016.08.019

    Article  CAS  Google Scholar 

  27. Chaudhary PK, Koshta N, Deo G (2020) Effect of O2 and temperature on the catalytic performance of Ni/Al2O3 and Ni/MgAl2O4 for the dry reforming of methane (DRM). Int J Hydrogen Energy 45:4490–4500. https://doi.org/10.1016/j.ijhydene.2019.12.053

    Article  CAS  Google Scholar 

  28. Wang T, Ma H, Zeng L et al (2016) Highly loaded Ni-based catalysts for low temperature ethanol steam reforming. Nanoscale 8:10177–10187. https://doi.org/10.1039/C6NR02586B

    Article  CAS  PubMed  Google Scholar 

  29. Németh M, Srankó D, Károlyi J et al (2017) Na-promoted Ni/ZrO2 dry reforming catalyst with high efficiency: details of Na2O–ZrO2–Ni interaction controlling activity and coke formation. Catal Sci Technol 7:5386–5401. https://doi.org/10.1039/C7CY01011G

    Article  Google Scholar 

  30. Hongmanorom P, Ashok J, Das S et al (2020) Zr–Ce-incorporated Ni/SBA-15 catalyst for high-temperature water gas shift reaction: methane suppression by incorporated Zr and Ce. J Catal 387:47–61. https://doi.org/10.1016/j.jcat.2019.11.042

    Article  CAS  Google Scholar 

  31. Lögdberg S, Tristantini D, Borg Ø et al (2009) Hydrocarbon production via Fischer–Tropsch synthesis from H2-poor syngas over different Fe-Co/γ-Al2O3 bimetallic catalysts. Appl Catal B Environ 89:167–182. https://doi.org/10.1016/j.apcatb.2008.11.037

    Article  CAS  Google Scholar 

  32. Jawad A, Rezaei F, Rownaghi AA (2020) Highly efficient Pt/Mo–Fe/Ni-based Al2O3–CeO2 catalysts for dry reforming of methane. Catal Today 350:80–90. https://doi.org/10.1016/j.cattod.2019.06.004

    Article  CAS  Google Scholar 

  33. Meshkani F, Rezaei M, Andache M (2014) Investigation of the catalytic performance of Ni/MgO catalysts in partial oxidation, dry reforming and combined reforming of methane. J Ind Eng Chem 20:1251–1260. https://doi.org/10.1016/j.jiec.2013.06.052

    Article  CAS  Google Scholar 

  34. Asencios YJO, Marcos FCF, Assaf JM, Assaf EM (2016) Oxidative-reforming of methane and partial oxidation of methane reactions over NiO/PrO2/ZrO2 catalysts: effect of nickel content. Braz J Chem Eng 33:627–636. https://doi.org/10.1590/0104-6632.20160333s20150056

    Article  CAS  Google Scholar 

  35. Singha RK, Ghosh S, Acharyya SS et al (2016) Partial oxidation of methane to synthesis gas over Pt nanoparticles supported on nanocrystalline CeO2 catalyst. Catal Sci Technol 6:4601–4615. https://doi.org/10.1039/c5cy02088c

    Article  CAS  Google Scholar 

  36. Xiao TC, Hanif A, York APE et al (2002) Study on the mechanism of partial oxidation of methane to synthesis gas over molybdenum carbide catalyst. Phys Chem Chem Phys 4:4549–4554. https://doi.org/10.1039/b204347e

    Article  CAS  Google Scholar 

  37. Ma Q, Guo L, Fang Y et al (2019) Combined methane dry reforming and methane partial oxidization for syngas production over high dispersion Ni based mesoporous catalyst. Fuel Process Technol 188:98–104. https://doi.org/10.1016/j.fuproc.2019.02.013

    Article  CAS  Google Scholar 

  38. Jalali R, Rezaei M, Nematollahi B, Baghalha M (2020) Preparation of Ni/MeAl2O4–MgAl2O4 (Me = Fe Co, Ni, Cu, Zn, Mg) nanocatalysts for the syngas production via combined dry reforming and partial oxidation of methane. Renew Energy 149:1053–1067. https://doi.org/10.1016/j.renene.2019.10.111

    Article  CAS  Google Scholar 

  39. Chen X, Jiang J, Li K et al (2017) Energy-efficient biogas reforming process to produce syngas: the enhanced methane conversion by O2. Appl Energy 185:687–697. https://doi.org/10.1016/j.apenergy.2016.10.114

    Article  CAS  Google Scholar 

  40. Guo J, Lou H, Zhao H et al (2004) Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl Catal A Gen 273:75–82. https://doi.org/10.1016/j.apcata.2004.06.014

    Article  CAS  Google Scholar 

  41. Góralski J, Grams J, Paryjczak T, Rzeźnicka I (2002) Investigation of the coke deposit on Ni–Al2O3 and Co–Al2O3 catalysts. Carbon N Y 40:2025–2028. https://doi.org/10.1016/S0008-6223(02)00145-8

    Article  Google Scholar 

  42. Ni J, Chen L, Lin J et al (2013) High performance of Mg–La mixed oxides supported Ni catalysts for dry reforming of methane: the effect of crystal structure. Int J Hydrogen Energy 38:13631–13642. https://doi.org/10.1016/j.ijhydene.2013.08.041

    Article  CAS  Google Scholar 

  43. Deng J, Cai M, Sun W et al (2013) Oxidative methane reforming with an intelligent catalyst: sintering-tolerant supported nickel nanoparticles. ChemSusChem 6:2061–2065. https://doi.org/10.1002/cssc.201300452

    Article  CAS  PubMed  Google Scholar 

  44. Al-Fatesh ASA, Ibrahim AA, Fakeeha AH et al (2011) Oxidative CO2 reforming of CH4 over Ni/α-Al2O3 catalyst. J Ind Eng Chem 17:479–483. https://doi.org/10.1016/j.jiec.2011.05.029

    Article  CAS  Google Scholar 

  45. Zhang F, Wang N, Yang L et al (2014) Ni–Co bimetallic MgO-based catalysts for hydrogen production via steam reforming of acetic acid from bio-oil. Int J Hydrogen Energy 39:18688–18694. https://doi.org/10.1016/j.ijhydene.2014.01.025

    Article  CAS  Google Scholar 

  46. Ay H, Üner D (2015) Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts. Appl Catal B Environ 179:128–138. https://doi.org/10.1016/j.apcatb.2015.05.013

    Article  CAS  Google Scholar 

  47. Wei Q, Gao X, Wang L, Ma Q (2020) Rational design of nickel-based catalyst coupling with combined methane reforming to steadily produce syngas. Fuel 271:117631. https://doi.org/10.1016/j.fuel.2020.117631

    Article  CAS  Google Scholar 

  48. Gálvez ME, Albarazi A, Da Costa P (2015) Enhanced catalytic stability through non-conventional synthesis of Ni/SBA-15 for methane dry reforming at low temperatures. Appl Catal A Gen 504:143–150. https://doi.org/10.1016/j.apcata.2014.10.026

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by PKC. The first draft of the manuscript was written by PKC and both the authors commented on previous versions of the manuscript. Both the authors read and approved the final manuscript.

Corresponding author

Correspondence to Goutam Deo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1945 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, P.K., Deo, G. Oxidative dry reforming of methane over a nickel–alumina catalyst for carbon free operation. Reac Kinet Mech Cat 133, 779–800 (2021). https://doi.org/10.1007/s11144-021-02043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02043-3

Keywords

Navigation