Skip to main content
Log in

On measuring and employing texture directionality for image classification

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Directionality is useful in many computer vision, pattern recognition, visualization, and multimedia applications since it is considered as an important pre-attentive attribute in human vision. To support using directionality (i.e., orientedness) for texture discrimination, a new measure that uses both local and global aspects of texture, with such use, to our knowledge, novel vis-à-vis prior state-of-the-art, to determine the directionality status for a texture is described and validated in this paper. This paper has four major elements. Element one is the measure we have developed that examines both local and global aspects of directionality to signal if a texture is directional or not. The local aspect is provided mostly from local pixel intensity differences, while a frequency domain analysis provides most of the global aspect. Element two is a comparison study of the measure (which exhibits the best outcomes) versus the known alternatives for determining texture directionality. Element three considers the measure relative to human experience. Element four considers applications of the measure to image classification. The second element (i.e., the study) is a comprehensive comparison study of existing texture directionality measures, based on the full set of Brodatz textures and human sentiment, which is the first such study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hawkins JK (1970) Picture processing and psychopictorics. Academic Press, New York, as cited by W. K. Pratt, Digital image processing, 2nd edn, 1991, Wiley

  2. Shiranita K, Miyajima T, Takiyama R (1998) Determination of meat quality by texture analysis. Pattern Recognit Lett 19(14):1319–1324

    Article  Google Scholar 

  3. Lee Y, Lee B, Kim HK, Yun YK, Kang SJ, Kim KT, Kim BD, Kim EJ, Choi YM (2018) Sensory quality characteristics with different beef quality grades and surface texture features assessed by dented area and firmness, and the relation to muscle fiber and bundle characteristics. Meat Sci 145:195–201

    Article  Google Scholar 

  4. Kacem A, Saïdani A (2017) A texture-based approach for word script and nature identification. Pattern Anal Appl 20(4):1157–1167

    Article  MathSciNet  Google Scholar 

  5. Suvarchala P, Kumar S (2018) Texture synthesis and modified filter bank in contourlets for improved iris recognition. Pattern Anal Appl 24(4):1127–1138

    Article  MathSciNet  Google Scholar 

  6. Zhou B, Duan X, Wei W, Ye D, Woźniak M, Damaševičius R (2019) An adaptive local descriptor embedding zernike moments for image matching. IEEE Access 7:183971–183984

    Article  Google Scholar 

  7. Połap D, Woźniak M (2019) Bacteria shape classification by the use of region covariance and convolutional neural network. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp 1–7

  8. Gorkani MM, Picard RW (1994) Texture orientation for sorting photos at a glance. In: Proc., 12th IAPR Intl Conf. Comp. Vision and Image Processing, vol 1, pp 459–464

  9. Mudigonda NR, Rangayyan RM, Leo Desautels JE (2001) Detection of breast masses in mammograms by density slicing and texture flow-field analysis. IEEE Trans Med Imaging 20(12):1215–1227

    Article  Google Scholar 

  10. Saha SK, Das AK, Chanda B (2004) Cbir using perception based texture and colour measures. In: Proc., Int’l Conf. Pattern Recog. ’04, vol 2, pp 985–988

  11. Kekre H, Thepade SD, Jain J, Agrawal N (2010) Iris recognition using texture features extracted from haarlet pyramid. Int’l J Comp. Apps. 11(12):1–5

    Google Scholar 

  12. Hubel D, Wiesel T (1968) Receptive fields and functional architecture of monkey striate cortex. Physiology 195:215–243

    Article  Google Scholar 

  13. Blake R, Holopigan K (1985) Orientation selectivity in cats and humans assessed by masking. Vision Res 25(10):1459–1467

    Article  Google Scholar 

  14. Beck J (1982) Textural Segmentation, in Organization and Representation in Perception. Erlbaum, Hillsdale, NY

    Google Scholar 

  15. Nothdurft C (1985) Sensitivity for structure gradient in texture discrimination tasks. Vision Res 25:1957–1968

    Article  Google Scholar 

  16. Nothdurft C (1991) Texture segmentation and pop-out from orientation contrast. Vision Res 31:1073–1078

    Article  Google Scholar 

  17. Ware C, Knight W (1992) Orderable dimensions of visual texture for data display: orientation, size, and contrast. In: Proc., ACM Conf. Human Factors in Computing Sys. ’92, pp 203–209

  18. Kimchi R (1988) Selective attention to global and local levels in the comparison of hierarchical patterns. Percept Psychophys 43:189–198

    Article  Google Scholar 

  19. Maskey M, Newman TS (2015) A measure of texture directionality. In: Proc., 10th Int’l Conf. Comp. Vision Theory and Apps., VISAPP (VISIGRAPP 2015), pp 432–438

  20. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804

    Article  Google Scholar 

  21. Chetverikov D, Hanbury A (2002) Finding defects in texture using regularity and local orientation. Pattern Recog 35(10):2165–2180

    Article  Google Scholar 

  22. Chetverikov D (1984) Measuring the degree of texture regularity. In: Proc., Int’l Conf. Pattern Recog., pp 80–82

  23. Cao F, Guichard F, Hornung H (2009) Measuring texture sharpness of a digital camera. Proc., SPIE 7250:72500H

  24. Hanzaei SH, Afshar A, Barazandeh F (2017) Automatic detection and classification of the ceramic tiles’ surface defects. Pattern Recog 66:174–189

    Article  Google Scholar 

  25. Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473

    Article  Google Scholar 

  26. Picard R, Gorkani M (1992) Finding perceptually dominant orientations in natural textures. Spatial Vision 8(2):221–253

    Google Scholar 

  27. Freeman W, Adelson E (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intel 13(9):891–906

    Article  Google Scholar 

  28. Abbadeni N (2000) Autocovariance-based perceptual textural features corresponding to human visual perception. In: Proc., Int’l Conf. Pattern Recog. ’00, vol 3, pp 901–904

  29. Abbadeni N, Zhou D, Wang S (2000) Computational measures corresponding to perceptual textural features. In: Proc., Int’l Conf. Image Processing ’00, vol 3, pp 897–900

  30. Hagh-Shenas H, Interrante V (2005) A closer look at texture metrics. In: Proc., 2nd Symp. Applied Perception in Graphics and Vis. (APGV ’05), p 176

  31. Jafari-Khouzani K, Soltanian-Zadeh H (2005) Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans Pattern Anal Mach Intell 27(6):1004–1008

    Article  Google Scholar 

  32. Feng X, Milanfar P (2002) Multiscale principal components analysis for image local orientation estimation. In: Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, pp 478–482

  33. Deprettere EF (1988) Elsevier Science Pub. Co., SVD and Signal Processing, Algorithms, Applications and Architectures

  34. Wilson R, Clippingdale S, Bhalerao AH (1990) Robust estimation of local orientations in images using a multiresolution approach. In: Proc, SPIE Visual Communications and Image Processing, p 1360

  35. Manjunath BS, Ohm J-R, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Tech 11(6):703–715

    Article  Google Scholar 

  36. Sikora T (2001) The mpeg-7 visual standard for content description-an overview. IEEE Trans Circuits Syst Video Tech 11(6):696–702

    Article  Google Scholar 

  37. Wu P, Manjunanth BS, Newsam SD, Shin HD (1999) A texture descriptor for image retrieval and browsing. In: Proc., IEEE Wkshp. Content-Based Access of Image and Video Libraries, 1999 (CBAIVL ’99), pp 3–7

  38. Zhang H, Wang S, Xu X, Chow T, Wu J (2018) Tree2Vector: learning a vectorial representation for tree-structured data. IEEE Trans Neural Netw Learn Syst 29(11):5304–5318

    Article  MathSciNet  Google Scholar 

  39. Wang Q, Zhang X, Li M, Dong X, Zhou Q, Yin Y (2012) Adaboost and multi-orientation 2d gabor-based noisy iris recognition. Pattern Recognit Lett 33(8):978–983

    Article  Google Scholar 

  40. Chaki J, Parekh R, Bhattacharya S (2015) Plant leaf recognition using texture and shape features with neural classifiers. Pattern Recog Lett 58:61–68

    Article  Google Scholar 

  41. Li XZ, Williams S, Bottema MJ (2014) Texture and region dependent breast cancer risk assessment from screening mammograms. Pattern Recog Lett 36:117–124

    Article  Google Scholar 

  42. Zheng G, Li X, Zhou L, Yang J, Ren L, Chen P, Zhang H, Lou X (2018) Development of a gray-level co-occurrence matrix-based texture orientation estimation method and its application in sea surface wind direction retrieval from SAR imagery. IEEE Trans Geosci Remote Sens 56(9):5244–5260

    Article  Google Scholar 

  43. Healey C, Enns J (1999) Large datasets at a glance: combining textures and colors in scientific visualization. IEEE Trans Visual Comput Graph 5(2):145–167

    Article  Google Scholar 

  44. Chamorro-Martinez J, Martinez-Jimenez P, Soto-Hidalgo J, Prados-Suárez B (2014) Perception-based fuzzy sets for visual texture modelling. Soft Comput 18:2485–2499

    Article  Google Scholar 

  45. Mukhopadhyay P, Chaudhuri B (2015) A Survey of Hough Transform. Pattern Recognit 48:993–1010

    Article  Google Scholar 

  46. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intel 24(7):971–987

    Article  Google Scholar 

  47. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  48. Zhang Z, Ma S, Liu H, Gong Y (2009) An edge detection approach based on directional wavelet transform. Comput Math Appl 57(8):1265–1271

    Article  MathSciNet  Google Scholar 

  49. Jackson SL (2009) Research methods and statistics?: A critical thinking approach. Wadsworth Cengage Learning, Belmont, CA

    Google Scholar 

  50. Srinivasan E, Ramar K, Suruliandi A (2011) Texture analysis using local texture patterns: a fuzzy logic approach. Int J Pattern Recognit Artif Intell 25(5):741–762

    Article  MathSciNet  Google Scholar 

  51. Dong J, Yuan X, Xiong F (2016) Global and local oriented edge magnitude patterns for texture classification. Int J Pattern Recognit Artif Intell 31(3):1–13

    Google Scholar 

  52. Cimpoi M, Maji S, Kokkinos I, Mohamed S, Vedaldi A (2014) Describing textures in the wild. In: Proc., IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp 3606–3613

  53. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vision 57(2):137–154

    Article  Google Scholar 

  54. Freund Y, Schapire RE (1995) A decision-theoretic generalization of on-line learning and an application to boosting. In: Proc., 2nd Euro. Conf. Comput. Learn. Th., EuroCOLT ’95, pp 23–37

  55. Collaborative Computational Project in Tomographic Imaging. (2013). https://www.ccpi.ac.uk. Accessed 10 Dec 2016

  56. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  57. Liu C, Nakashima K, Sako H, Fujisawa H (2003) Handwritten digit recognition: benchmarking of state-of-the- art techniques. Pattern Recognit 36(10):2271–2285

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge and appreciate comments from review team members. We also appreciate the participants in our classification task studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manil Maskey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskey, M., Newman, T.S. On measuring and employing texture directionality for image classification. Pattern Anal Applic 24, 1649–1665 (2021). https://doi.org/10.1007/s10044-021-01013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-021-01013-8

Keywords

Navigation