Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple paths to morphological diversification during the origin of amniotes

Abstract

Early terrestrial vertebrates (amniotes) provide a classic example of diversification following adaptive zone invasion. The initial terrestrialization of vertebrates was closely followed by dietary diversification, as evidenced by a proliferation of craniomandibular and dental adaptations. However, morphological evolution of early amniotes has received limited study, in analyses with restricted taxonomic scope, leaving substantial questions about the dynamics of this important terrestrial radiation. We use novel analyses of discrete characters to quantify variation in evolutionary rates and constraints during diversification of the amniote feeding apparatus. We find evidence for an early burst, comprising high rates of anatomical change that decelerated through time, giving way to a background of saturated morphological evolution. Subsequent expansions of phenotypic diversity were not associated with increased evolutionary rates. Instead, variation in the mode of evolution became important, with groups representing independent origins of herbivory evolving distinctive, group-specific morphologies and thereby exploring novel character-state spaces. Our findings indicate the importance of plant–animal interactions in structuring the earliest radiation of amniotes and demonstrate the importance of variation in modes of phenotypic divergence during a major evolutionary radiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the supertree used in the study.
Fig. 2: Rates of dental evolution and disparity during the origin of amniotes.
Fig. 3: Comparisons of patristic morphological distances to pairwise morphological dissimilarity for faunivorous and herbivorous amniotes.

Similar content being viewed by others

Data availability

All data analysed in this study are available in Supplementary Data 1–6.

Code availability

The analysis code is available in Supplementary Data 7.

References

  1. Frazzetta, T. H. Adaptive problems and possibilities in the temporal fenestration of tetrapod skulls. J. Morph. 125, 145–158 (1968).

    Article  CAS  PubMed  Google Scholar 

  2. Janis, C. M. & Keller, J. C. Modes of ventilation in early tetrapods: costal aspiration as a key feature of amniotes. Acta Palaeontol. Pol. 46, 137–170 (2001).

    Google Scholar 

  3. Olson, E. C. Community evolution and the origin of mammals. Ecology 47, 291–302 (1966).

    Article  Google Scholar 

  4. DiMichele, W. A. & Aronson, R. B. The Pennsylvanian–Permian vegetational transition: a terrestrial analogue to the onshore–offshore hypothesis. Evolution 46, 807–824 (1992).

    Article  PubMed  Google Scholar 

  5. Sues, H.-D. & Reisz, R. R. Origins and early evolution of herbivory in tetrapods. Trends Ecol. Evol. 13, 141–145 (1998).

  6. Olson, E. C. The family Diadectidae and its bearing on the classification of reptiles. Fieldiana Geol. 11, 1–53 (1947).

    Google Scholar 

  7. Hotton, N., Olson, E. C. & Beerbower, R. in Amniote Origins (eds Sumida, S. S. & Martin K. L. M.) 207–264 (San Diego Academic Press, 1996).

  8. Dodick, J. T. & Modesto, S. The cranial anatomy of the captorhinid reptile Labidosaurikos meachami from the lower Permian of Oklahoma. Palaeontology 38, 687–711 (1995).

    Google Scholar 

  9. Modesto, S. P. The skull of the herbivorous synapsid Edaphosaurus boanerges from the lower Permian of Texas. Palaeontology 38, 213–239 (1995).

  10. King, G. M., Oelofsen, B. W. & Rubidge, B. S. The evolution of the dicyndont feeding system. Zool. J. Linn. Soc. 96, 185–211 (1988).

    Article  Google Scholar 

  11. Simpson, G. G. Tempo and Mode in Evolution (Columbia Univ. Press, 1944).

  12. Simpson, G. G. The Major Features of Evolution (Columbia Univ. Press, 1953).

  13. Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

  14. Givnish, T. J. Ecology of plant speciation. Taxon 59, 1326–1366 (2010).

    Article  Google Scholar 

  15. Givnish, T. J. Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytol. 207, 297–303 (2015).

    Article  PubMed  Google Scholar 

  16. Valentine, J. W. Determinants of diversity in higher taxonomic categories. Paleobiology 6, 444–450 (1980).

    Article  Google Scholar 

  17. Gould, S. J. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17, 411–423 (1991).

    Article  Google Scholar 

  18. Briggs, D. E. G., Fortey, R. A. & Wills, M. A. Morphological disparity in the Cambrian. Science 256, 1670–1673 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Ingram, T. & Kai, Y. The geography of morphological convergence in the radiations of Pacific Sebastes rockfishes. Am. Nat. 184, 115–131 (2014).

    Article  Google Scholar 

  20. Harmon, L. J. et al. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64, 2385–2396 (2010).

    PubMed  Google Scholar 

  21. Puttick, M. N. Mixed evidence for early bursts of morphological evolution in extant clades. J. Evol. Biol. 31, 502–515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Foote, M. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20, 320–344 (1994).

    Article  Google Scholar 

  23. Grant, V. Plant Speciation (Columbia Univ. Press, 1981).

  24. Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioural traits are more labile. Evolution 57, 717–745 (2003).

    Article  PubMed  Google Scholar 

  25. Mahler, D. L., Revell, L. J., Glor, R. E. & Losos, J. B. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64, 2731–2745 (2010).

    Article  PubMed  Google Scholar 

  26. Harmon, L. J., Schulte, J. A., Larson, A. & Losos, J. B. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301, 961–964 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sidlaukas, B. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62, 3135–3156 (2008).

    Article  Google Scholar 

  28. Valentine, J. W. & Erwin, D. H. in Development as an Evolutionary Process (eds Raff, R. A. & Raff, E. C.) 71–107 (Liss, 1987).

  29. Erwin, D. H., Valentine, J. W. & Jablonski, D. The origin of animal body plans. Am. Sci. 85, 126–137 (1997).

    Google Scholar 

  30. Stanley, S. M. Paleozoic mass extinctions: shared patterns suggest global cooling as a common cause. Am. J. Sci. 288, 334–352 (1988).

    Article  Google Scholar 

  31. Bengston, S. in Early Life on Earth (ed. Bengston, S.) 412–425 (Columbia Univ. Press, 1994).

  32. Anderson, P. S. L., Friedman, M. & Ruta, M. Late to the table: diversification of tetrapod mandibular biomechanics lagged behind the evolution of terrestriality. Integr. Comp. Biol. 53, 197–208 (2013).

  33. Olson, E. C. Jaw mechanisms: rhipidisteans, amphibians and reptiles. Am. Zool. 1, 205–215 (1961).

    Article  Google Scholar 

  34. Carroll, R. L. Problems of the origin of reptiles. Biol. Rev. 44, 393–432 (1968).

    Article  Google Scholar 

  35. Pearson, M. R., Benson, R. B. J., Upchurch, P., Fröbisch, J. & Kammerer, C. F. Reconstructing the diversity of early terrestrial herbivorous tetrapods. Palaeogeogr. Palaeoclim. Palaeoecol. 372, 42–49 (2013).

    Article  Google Scholar 

  36. Brocklehurst, N., Ruta, M., Müller, J. & Fröbisch, J. Elevated extinction rates as a trigger for diversification rate shifts: early amniotes as a case study. Sci. Rep. 5, 17104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brocklehurst, N., Kammerer, C. F. & Benson, R. B. J. The origin of tetrapod herbivory: effects on local plant diversity. Proc. R. Soc. B 287, 20200124 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Neige, P., Dera, G. & Dommergues, J. L. Adaptive radiation in the fossil record: a case study among Jurassic ammonoids. Palaeontology 56, 1247–1261 (2013).

    Article  Google Scholar 

  39. Simões, M. et al. The evolving theory of evolutionary radiations. Trends Ecol. Evol. 31, 27–34 (2016).

    Article  PubMed  Google Scholar 

  40. Ruta, M., Angielczyk, K., Fröbisch, J. & Benton, M. J. Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids. Proc. R. Soc. B 280, 20131071 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brocklehurst, N. Rates of morphological evolution in Captorhinidae: an adaptive radiation of Permian herbivores. PeerJ 5, e3200 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Grunert, H. R., Brocklehurst, N. & Fröbisch, J. Diversity and disparity of Therocephalia: macroevolutionary patterns through two mass extinctions. Sci. Rep. 9, 5063 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. MacDougall, M. J., Brocklehurst, N. & Fröbisch, J. Species richness and diversity of parareptiles across the end-Permian mass extinction. Proc. R. Soc. B 286, 20182572 (2018).

    Article  Google Scholar 

  44. Brocklehurst, N. Morphological evolution in therocephalians breaks the hypercarnivore ratchet. Proc. R. Soc. B 286, 20190590 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. van Valkenberg, B. in Carnivore Behaviour, Ecology and Evolution (ed. Gittleman, J.) 410–436 (Springer, 1989).

  46. Jernvall, J., Hunter, J. P. & Fortelius, M. Molar tooth diversity, disparity and ecology in Cenozoic ungulate radiations. Science 274, 1489–1492 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Schwenk, K. Feeding: Form, Function and Evolution in Terrestrial Vertebrates (Academic Press, 2000).

  48. Müller, J. & Reisz, R. R. The phylogeny of early eureptiles: comparing parsimony and Bayesian approaches in the investigation of a basal fossil clade. Syst. Biol. 55, 503–511 (2006).

    Article  PubMed  Google Scholar 

  49. Carroll R. L. & Gaskill P. The Order Microsauria (American Philosophical Society, 1978).

  50. Brocklehurst, N., Reisz, R. R., Fernandez, V. & Fröbisch, J. A re-description of ‘Mycterosaurus’ smithae, an early Permian eothyridid, and its impact on the phylogeny of pelycosaurian-grade synapsids. PLoS ONE 11, e60156810 (2016).

    Article  CAS  Google Scholar 

  51. Ford, D. P. & Benson, R. B. J. The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. Nat. Ecol. Evol. 4, 57–65 (2020).

    Article  PubMed  Google Scholar 

  52. Ruta, M., Wagner, P. J. & Coates, M. I. Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character change. Proc. R. Soc. B 273, 2113–2118 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sahney, S. & Benton, M. J. Recovery from the most profound mass extinction of all time. Proc. R. Soc. B 275, 759–765 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brocklehurst, N., Day, M. O., Rubidge, B. S. & Fröbisch, J. Olson’s extinction and the latitudinal biodiversity gradient of tetrapods in the Permian. Proc. R. Soc. B 284, 20170231 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Brocklehurst, N. An examination of the impact of Olson’s extinction on tetrapods from Texas. PeerJ 6, e4767 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brocklehurst, N., Kammerer, C. F. & Fröbisch, J. The early evolution of synapsids and the influence of sampling on their fossil record. Paleobiology 39, 470–490 (2013).

    Article  Google Scholar 

  57. Fröbisch, J. Composition and similarity of global anomodont-bearing tetrapod faunas. Earth Sci. Rev. 95, 119–157 (2009).

    Article  Google Scholar 

  58. MacDougall, M. J., Brocklehurst, N. & Fröbisch, J. Species richness and disparity of parareptiles across the end-Permian mass extinction. Proc. R. Soc. B 286, 20182572 (2018).

    Article  Google Scholar 

  59. Brocklehurst, N., Panciroli, E., Benevento, G. L. & Benson, R. B. J. Mammaliaform extinctions as a driver of the morphological radiation of Cenozoic mammals. Curr. Biol. https://doi.org/10.1016/j.cub.2021.04.044 (2021).

  60. Wagner, P. J. Exhaustion of morphologic character states among fossil taxa. Evolution 54, 365–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Nee, S., Mooers, A. O. & Harvey, P. H. Tempo and mode of evolution revealed from molecular phylogenies. Proc. Natl Acad. Sci. USA 89, 8322–8326 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seehausen, O. African cichlid fish: a model system in adaptive radiation research. Proc. Natl Acad. Sci. USA 73, 1987–1998 (2006).

    Google Scholar 

  63. Phillimore, A. B. & Price, T. D. Density-dependent cladogenesis in birds. PLoS Biol. 6, e71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McPeek, M. A. The ecological dynamics of clade diversification and community assembly. Am. Nat. 172, E270–E284 (2008).

    Article  PubMed  Google Scholar 

  65. Rabosky, D. L. & Lovette, I. J. Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62, 1866–1875 (2009).

    Article  Google Scholar 

  66. O’Donovan, C., Meade, A. & Venditti, C. Dinosaurs reveal the geographic signal of an evolutionary radiation. Nat. Ecol. Evol. 2, 452–458 (2018).

    Article  PubMed  Google Scholar 

  67. Foote, M. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 28, 129–152 (1997).

    Article  Google Scholar 

  68. Hughes, M., Gerber, S. & Wills, M. A. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA 110, 13875–13879 (2013).

  69. Sidlaukas, B. Testing for unequal rates of morphological diversification in the absence of a detailed phylogeny: a case study from characiform fishes. Evolution 61, 299–316 (2007).

  70. Benson, R. B. J., Hunt, G., Carrano, M. T. & Campione, N. Cope’s rule and the adaptive landscape of dinosaur body size. Palaeontology 61, 13–48 (2018).

    Article  Google Scholar 

  71. Hill, J. J., Puttick, M. N., Stubbs, T. L., Rayfield, E. J. & Donoghue, P. C. Evolution of jaw disparity in fishes. Palaeontology 61, 847–854 (2018).

    Article  Google Scholar 

  72. Simões, T. R., Vernygora, O., Caldwell, M. W. & Pierce, S. E. Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nat. Commun. 11, 3322 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oyston, J. W., Hughes, M., Gerber, S. & Wills, M. A. Why should we investigate the morphological disparity of plant clades? Ann. Bot. 117, 859–879 (2016).

  74. Lofgren, A. S., Plotnick, R. E. & Wagner, P. J. Morphological diversity of Carboniferous arthropods and insights on disparity patterns through the Phanerozoic. Paleobiology 29, 349–368 (2003).

    Article  Google Scholar 

  75. Condamine, F. L., Clapham, M. E. & Kergoat, G. J. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence. Sci. Rep. 6, 19208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Labandeira, C. C. & Sepkoski, J. J. Insect diversity in the fossil record. Science 261, 310–315 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, M. S. Y., Soubrier, J. & Edgecombe, G. D. Rates of phenotypic and genomic evolution during the Cambrian Explosion. Curr. Biol. 23, 1889–1895 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Halliday, T. J. D., Upchurch, P. & Goswami, A. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction. Proc. R. Soc. B 283, 20153026 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schaeffer, B. Rates of evolution in the coelacanth and dipnoan fishes. Evolution 6, 101–111 (1952).

    Article  Google Scholar 

  80. Lloyd, G. T., Wang, S. C. & Brusatte, S. L. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evolution 66, 330–348 (2012).

    Article  PubMed  Google Scholar 

  81. Wright, D. F. Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids. Sci. Rep. 7, 13745 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wagner, P. J. Early bursts of disparity and the reorganization of character integration. Proc. R. Soc. B 285, 20181604 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Slater, G. J., Harmon, L. J. & Alfaro, M. E. Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution 66, 3931–3944 (2012).

    Article  PubMed  Google Scholar 

  84. Brocklehurst, N., Dunne, E. M., Cashmore, D. D. & Fröbisch, J. Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea. Nat. Commun. 9, 5216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pardo, J. D., Szostakiwskyj, M., Ahlberd, P. E. & Anderson, J. S. Hidden morphological diversity among early tetrapods. Nature 546, 642–645 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Baum, B. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10 (1992).

    Article  Google Scholar 

  87. Ragan, M. Phylogenetic inference based on matrix representation of trees. Mol. Phylogenet. Evol. 1, 53–58 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Salamin, N., Hodkinson, T. R. & Savolainen, V. Building supertrees: an empirical assessment using the grass family (Poaceae). Syst. Biol. 51, 134–150 (2002).

    Article  Google Scholar 

  89. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

  90. Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Pyron, R. A. A likelihood method for assessing molecular divergence-time estimates and the placement of fossil calibrations. Syst. Biol. 59, 185–194 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Lloyd, G. T. Estimating morphological diversity and tempo with discrete character–taxon matrices: implementation, challenges, progress and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016).

    Article  Google Scholar 

  94. Guillerme, T. & Cooper, N. Time for a rethink: time sub-sampling methods in disparity-through-time analyses. Palaeontology 61, 481–493 (2018).

    Article  Google Scholar 

  95. Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  97. Jombart, T., Balloux, F. & Dray, S. Adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26, 1907–1909 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.B. thanks D. Button, M. Ezcurra, D. Ford, C. Kammerer, J. Ponstein and X.-C. Wu for helpful discussions and assistance with character scores; A. S. Murray and M. Day (Natural History Museum London), D. Schwarz (Museum für Naturkunde, Berlin), N.-E. Jalil (Muséum National d’Histoire Naturelle, Paris), S. Jirah and B. Zipfel (Evolutionary Studies Institute, Johannesburg), C. Mehling and M. Norrell (American Museum of Natural History, New York), J. Cundiff (Museum of Comparative Zoology, Harvard) and W. Simpson (Field Museum of Natural History, Chicago) for access to specimens and assistance during visits to collections. N.B.’s research was funded by Deutsche Forschungsgemeinschaft grant number BR 5724/1-1, Palaeontological Association Research grant number PA-RG201901 and a Collections Study Grant from the American Museum of Natural History. Parts of this work were funded by the European Union’s Horizon 2020 research and innovation program 2014–2018 under grant agreement 677774 (European Research Council (ERC) Starting Grant: TEMPO) to R.J.B.

Author information

Authors and Affiliations

Authors

Contributions

N.B. conceptualized the project, and collected and analysed the data. N.B. and R.J.B. developed the methodology and wrote the manuscript.

Corresponding author

Correspondence to Neil Brocklehurst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Peter Wagner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Datasets 1 and 2, Figs. 1 and 2, Table 1, and Data 1–7.

Reporting Summary

Peer Review Information

Supplementary Table 1

By-interval t tests, comparing the disparity values obtained at each time slice to those of the preceding slice, and identifying intervals where significant shifts occurred. Intervals with significant shifts (P < 0.05) are highlighted in yellow.

Supplementary Data 1

Character taxon matrix and MrBayes commands for time calibration of the tree, constraining the topology to that of the main text supertree.

Supplementary Data 2

Character taxon matrix and MrBayes commands for time calibration of the tree, constraining the topology to that of Ford and Benson51.

Supplementary Data 3

Maximum clade credibility time-calibrated tree of the main text supertree.

Supplementary Data 4

Maximum clade credibility time-calibrated tree of the supertree constrained to the Ford and Benson topology.

Supplementary Data 5

Maximum clade credibility tree of the main text supertree, with branch lengths representing morphological change instead of time.

Supplementary Data 6

First and last appearances and diet of taxa.

Supplementary Data 7

Analysis script.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brocklehurst, N., Benson, R.J. Multiple paths to morphological diversification during the origin of amniotes. Nat Ecol Evol 5, 1243–1249 (2021). https://doi.org/10.1038/s41559-021-01516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01516-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing