Skip to main content
Log in

Response of the Tropical Tree Species Astronium graveolens to Meteorological Conditions and Ground-Level Ozone in São Paulo, Brazil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Astronium graveolens is a native tree species from Atlantic Forest considered sensitive to O3. This study aimed to determine which environmental factors, including air quality and meteorological conditions, have the most significant influence on gas exchange and the appearance of visible foliar symptoms in this species. Saplings were potted and exposed in a standardized manner in an open area in the southeastern city of São Paulo, Brazil. Gas exchange was measured weekly in the morning (9 am to 10 am), midday (11 am to 12 pm), and afternoon (2 pm to 3 pm) during the spring and summer seasons (n = 10). Data on O3 concentration and meteorological conditions were obtained on-site. Principal component analysis identified that the morning hours provide the most favorable meteorological conditions for gas exchange. High temperature and VPD reduced gas exchange in the midday and afternoon. Although the AOT40 was high, there were no visible foliar symptoms, which was an unexpected result. We propose that the meteorological conditions, mainly the VPD and temperature, caused stomatal closure, and consequently prevented the absorption of O3; therefore, there was no association between O3 and reduction of gas exchange, nor manifestation of foliar visible symptoms. We consider that more studies are necessary for the proper use of A. graveolens as an O3 bioindicator species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Repository: Mendeley Data, https://data.mendeley.com/datasets/5h4pfpzmck/draft?a=33d9bf14-0608-48e9-bc25-f87888754846

Code availability

“Not applicable”.

References

  • Agathokleous, E., Saitanis, C.J., Feng, Z.Z., De Marco, A., Araminiene, V., Domingos, M., Sicard, P., Paoletti, E. 2020. Ozone biomonitoring: A versatile tool for science, education and regulation. Current Opinion in Environmental Science & Health

  • Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The effects of tropospheric of ozone on net primary productivity and implications for climate change. Ann Rev Plant Biol, 63, 637–661.

    Article  CAS  Google Scholar 

  • Boian, C., & Andrade, M. F. (2012). Characterization of ozone transport among Metropolitan Regions. Rev Bras Meteor, 27, 229–242.

    Article  Google Scholar 

  • Cassimiro, J. C., & Moraes, R. M. (2016). Responses of a tropical tree species to ozone: Visible leaf injury, growth, and lipid peroxidation. Environmental Science and Pollution Research, 23, 8085–8090.

    Article  CAS  Google Scholar 

  • Cassimiro, J. C., Moura, B. B., Alonso, R., Meirelles, S. T., & Moraes, R. M. (2016). Ozone stomatal flux and O3 concentration-based metrics for Astronium graveolens Jacq., a Brazilian native forest tree species. Environmental Pollution, 213, 1007–1015.

    Article  CAS  Google Scholar 

  • Cassimiro, J. C., Souza, S. R., & Moraes, R. M. (2015). Trocas gasosas e injúrias foliares visíveis em plantas jovens de Astronium graveolens Jacq. fumigadas com ozônio. Hoehnea, 42, 689–696.

    Article  Google Scholar 

  • CETESB (2014) Relatório de qualidade do ar no estado de São Paulo. Série Relatórios. Companhia Ambiental do Estado de São Paulo.

  • CETESB (2019) Relatório de qualidade do ar no estado de São Paulo. Série Relatórios. Companhia Ambiental do Estado de São Paulo.

  • CLRTAP (2017) Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Chapter 3: Mapping critical levels for vegetation https://icpvegetation.ceh.ac.uk/sites/default/files/Chapter%203%20-%20Mapping%20critical%20levels%20for%20vegetation.pdf. Accessed date: 01 Sept 2020.

  • Domingos, M., Bulbovas, P., Camargo, C. S., Aguiar-Silva, C., Brandão, S. E., Dafré-Martinelli, M., Dias, A. P., Engela, M. R. S., Gagliono, J., Moura, B. B., Alves, E. S., Rinaldi, M. C. S., Gomes, E. P. C., Furlan, C. M., & Figueiredo, A. M. G. (2015). Searching for native tree species and respective potential biomarkers for future assessment of pollution effects on the highly diverse Atlantic Forest in SE-Brazil. Environmental Pollution, 202, 85–95.

    Article  CAS  Google Scholar 

  • Emberson, L. D., Ashmore, M. R., Cambridge, H. M., Simpson, D., & Tuovinen, J. (2000). Modelling stomatal ozone flux across Europe. Environmental Pollution, 109, 403–413.

    Article  CAS  Google Scholar 

  • Franco, A. C., & Lüttge, U. (2002). Midday depression in savanna trees: Coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia, 131, 356–365.

    Article  CAS  Google Scholar 

  • Gerosa, B., Marzuoli, R., Desotgiu, R., Bussotti, F., & Ballarin-Denti, A. (2009). Validation of the stomatal flux approach for the assessment of ozone visible injury in young forest trees. Results from the TOP (transboundary ozone pollution) experiment at Curno. Italy. Environ Pollut, 157, 1497–1505.

    Article  CAS  Google Scholar 

  • Guaratini, M. T. G., Gomes, E. C. P., Tamashiro, J. Y., & Rodrigues, R. R. (2008). Composição florística da Reserva Municipal de Santa Genebra, Campinas, SP. Rev Bras Bot, 31, 323–337.

    Article  Google Scholar 

  • Gutiérrez, M. V. S., Pacheco, A., & Holbrook, N. M. (2008). Leaf age and the timing of leaf abscission in two tropical dry forest trees. Trees, 22, 393–401.

    Article  Google Scholar 

  • Heath, R. (2009). Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change? Environmental Pollution, 155, 453–463.

    Article  Google Scholar 

  • Heath, R. L., Lefohn, A. S., & Musselman, R. C. (2009). Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose. Atmospheric Environment, 43, 2919–2928.

    Article  CAS  Google Scholar 

  • IAG. (2019). Boletins mensais da estação meteorológica IAG-USP. Geofísica e Ciências Atmosféricas da Universidade de São Paulo.

    Google Scholar 

  • Jarvis, P. G. (1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. Series b, Biological Sciences, 273, 593–610.

    CAS  Google Scholar 

  • Li, P., Feng, Z., Catalayud, V., Yuan, X., Xu, Y., & Paoletti, E. (2017). A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant, Cell and Environment, 40, 2369–2380.

    Article  CAS  Google Scholar 

  • Lin, Y., Medlyn, B., Duursma, R., et al. (2015). Optimal stomatal behavior around the world. Nature Clim Change, 5, 459–464.

    Article  CAS  Google Scholar 

  • Medlyn, B. E., Pepper, D. A., O’Grady, A. P., & Keith, H. (2007). Linking leaf and tree water use with an individual-tree model. Tree Physiology, 27, 1687–1699.

    Article  Google Scholar 

  • Moura, B. B., Alves, E. S., Souza, S. R., Domingos, M., & Vollenweider, P. (2014). Ozone phytotoxic potential with regard to fragments of the Atlantic Semi-deciduous Forest downwind of Sao Paulo, Brazil. Environmental Pollution, 192, 65–73.

    Article  CAS  Google Scholar 

  • Moura, B. B., Alves, E. S., Souza, M. M. A., & SR, Schaub M, Vollenweider P, . (2018). Ozone affects leaf physiology and causes injury to foliage of native tree species from the tropical Atlantic Forest of southern Brazil. Science of the Total Environment, 610, 912–925.

    Article  Google Scholar 

  • Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica Et Biophysica Acta, 1767, 414–421.

    Article  CAS  Google Scholar 

  • Nogueira, A., Matinez, C. A., Ferreira, L., & Prado, C. A. (2004). Photosynthesis and water use efficiency in twenty tropical tree species of differing succession status in a Brazilian reforestation. Photosynthetica, 42, 351–356.

    Article  CAS  Google Scholar 

  • Overmyer, K., Wrzaczek, M., & Kangasjärvi, J. (2009). Reactive oxygen species in ozone toxicity. In F. Baluška & J. Vivanco (Eds.), Signaling and communication in plants (pp. 191–207). Springer.

    Google Scholar 

  • Paoletti, E., & Manning, W. J. (2007). Toward a biologically significant and usable standard for ozone that will also protect plants. Environmental Pollution, 150, 85–95.

    Article  CAS  Google Scholar 

  • Pina, J. M., & Moraes, R. M. (2010). Gas exchange, antioxidants and foliar injuries in saplings of a tropical woody species exposed to ozone. Ecotoxicology and Environmental Safety, 73, 685–691.

    Article  CAS  Google Scholar 

  • Prado, C. A., Wenhui, Z., Rojas, M. H. C., & Souza, G. M. (2004). Seasonal leaf gas exchange and water potential in a cerrado woody species community. Brazilian Journal of Plant Physiology, 16, 7–16.

    Article  Google Scholar 

  • Ribeiro, R. V., Souza, G. M., Oliveira, R. F., & Machado, E. C. (2005). Photosynthetic responses of tropical tree species from different successional groups under contrasting irradiance conditions. Rev Bras Bot, 28, 49–161.

    Google Scholar 

  • Urban, O., Klem, K., Ac, A., Havrankova, K., Holisova, P., Navratil, M., Zitova, M., Kozlova, K., Pokorný, R., Sprtova, M., Tomaskova, I., Spunda, V., & Grace, J. (2012). Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within spruce canopy. Func Ecol, 26, 46–55.

    Article  Google Scholar 

  • Vanderwel, M. C., Slot, M., Lichtstein, J. W., Reich, P. B., Kattge, J., Atkin, O. K., Bloomfield, K. J., Tjoelker, M. G., & Kitajima, K. (2015). Global convergence in leaf respiration from estimates of thermal acclimation across time and space. New Phytologist, 207, 1026–1037.

    Article  Google Scholar 

  • Wang Z, Wang C, Wang B, Wang X, Li J, Wu J, Liu L (2020) Interactive effects of air pollutants and atmospheric moisture stress on aspen growth and photosynthesis along an urban-rural gradient. Environ Pollut 260:114076.

  • Wujeska, A., Bossinger, G., & Tausz, M. (2013). Responses of foliar antioxidative and pho-toprotective defence systems of trees to drought: A meta-analysis. Tree Physiology, 33, 1018–1029.

    Article  CAS  Google Scholar 

  • Zhang, J. J., Wei, Y., & Fang, Z. (2019). Ozone pollution: A major health hazard worldwide. Frontiers in Immunology, 10, 2518.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the graduate program at the Institute of Botany of São Paulo and the São Paulo Research Foundation (FAPESP) for financial support (Process 2016/19738-8).

Funding

R.M. Moraes received funding from FAPESP (Process 2016 / 19.738–8) to carry out this study.

Author information

Authors and Affiliations

Authors

Contributions

M.S.B.: investigation, formal analysis, writing-original draft; C.M.F.: review and editing; S.T.M.: formal analysis, review and editing; S.R.S.: review and editing; R.M.M.: funding acquisition; conceptualization; review and editing.

Corresponding author

Correspondence to Regina M. Moraes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics Approval

“Not applicable”.

Authors’ Agreement

The authors declare that the manuscript has been approved by all named authors and confirm that the order of authors listed in the manuscript has been approved by all of us.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, M.S., Furlan, C.M., Meirelles, S.T. et al. Response of the Tropical Tree Species Astronium graveolens to Meteorological Conditions and Ground-Level Ozone in São Paulo, Brazil. Water Air Soil Pollut 232, 320 (2021). https://doi.org/10.1007/s11270-021-05272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05272-3

Keywords

Navigation