Skip to main content
Log in

Ultrathin hexagonal boron nitride as a van der Waals’ force initiator activated graphene for engineering efficient non-metal electrocatalysts of Li-CO2 battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Reasonably regulating electronic coupling to promote charge transfer and exciton separation has been regarded a promising approach in catalysis. The material engineering of van der Waals heterojunction (vdWsH) based on two-dimensional (2D) materials would be a potential way to optimize the as-prepared extrinsic physicochemical characteristics. However, it was still an almost uncultivated land waiting for exploration in catalysis. Herein, we introduced the inert h-boron nitride (h-BN) in non-metal reduced graphene oxide (GN) catalysts and constructed BN-GN vdWsH. The theoretical calculation demonstrated that the h-BN can effectively modify the electronic properties of graphene. With the introduction of h-BN, the BN-GN vdWsH can obviously enhance the catalytic activity of Li-CO2 battery. The existence of BN-GN vdWsH can reduce the overpotential more than 700 mV compared with reduced graphene oxide during the CO2 reduction reaction (CO2RR) and CO2 evolution reaction (CO2ER), and it extended cyclic stability more than three times, which was one of the most outstanding non-metallic catalysts. The reasonable structure design made it work as a high efficient electrocatalyst, which shed light on the development for functional treatment of catalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  3. Tan, C. L.; Cao, X. H.; Wu, X. J; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    Article  CAS  Google Scholar 

  4. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    Article  CAS  Google Scholar 

  5. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

    Article  CAS  Google Scholar 

  6. Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    Article  CAS  Google Scholar 

  7. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  CAS  Google Scholar 

  8. Kutty, R. G.; Sreejith, S.; Kong, X.; He, H.; Wang, H.; Lin, J. H.; Suenaga, K.; Lim, C. T.; Zhao, Y. L.; Ji, W. et al. A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake. Nano Res. 2018, 11, 6325–6335.

    Article  CAS  Google Scholar 

  9. Zhao, X. W.; Wu, Y. Z.; Wang, Y. S.; Wu, H. S.; Yang, Y. W.; Wang, Z. P.; Dai, L. X.; Shang, Y. Y.; Cao, A. Y. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Res. 2020, 13, 1044–1052.

    Article  CAS  Google Scholar 

  10. Yuan, D.; Zhang, Y.; Ho, W.; Wu, R. Effects of van der Waals dispersion interactions in density functional studies of adsorption, catalysis, and tribology on metals. J. Phys. Chem. C 2020, 124, 16926–16942.

    Article  CAS  Google Scholar 

  11. Yankowitz, M.; Ma, Q.; Jarillo-Herrero, P.; LeRoy, B. J. Van der waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 2019, 1, 112–125.

    Article  CAS  Google Scholar 

  12. Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

    Article  CAS  Google Scholar 

  13. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magicangle graphene superlattices. Nature 2018, 556, 43–50.

    Article  CAS  Google Scholar 

  14. Lu, X. B.; Stepanov, P.; Yang, W.; Xie, M.; Aamir, M. A.; Das, I.; Urgell, C.; Watanabe, K.; Taniguchi, T.; Zhang, G. Y. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 2019, 574, 653–657.

    Article  CAS  Google Scholar 

  15. Barroso-Bujans, F.; Cerveny, S.; Verdejo, R.; Del Val, J. J.; Alberdi, J. M.; Alegría, A.; Colmenero, J. Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation. Carbon 2010, 48, 1079–1087.

    Article  CAS  Google Scholar 

  16. Zhang, K. X.; Su, H.; Wang, H. H.; Zhang, J. J.; Zhao, S. Y.; Lei, W. W.; Wei, X.; Li, X. H.; Chen, J. S. Atomic-scale mott-schottky heterojunctions of boron nitride monolayer and graphene as metal-free photocatalysts for artificial photosynthesis. Adv. Sci. 2018, 5, 1800062.

    Article  Google Scholar 

  17. Zeng, J.; Chen, W.; Cui, P.; Zhang, D. B.; Zhang, Z. Y. Enhanced half-metallicity in orientationally misaligned graphene/hexagonal boron nitride lateral heterojunctions. Phys. Rev. B 2016, 94, 235425.

    Article  Google Scholar 

  18. Chen, X. K.; Xie, Z. X.; Zhou, W. X.; Tang, L. M.; Chen, K. Q. Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction. Carbon 2016, 100, 492–500.

    Article  CAS  Google Scholar 

  19. Liu, S.; Liao, Q. L.; Zhang, Z.; Zhang, X. K.; Lu, S. N.; Zhou, L. X.; Hong, M. Y.; Kang, Z.; Zhang, Y. Strain modulation on graphene/ZnO nanowire mixed-dimensional van der Waals heterostructure for high-performance photosensor. Nano Res. 2017, 10, 3476–3485.

    Article  CAS  Google Scholar 

  20. Chen, C. C.; Li, Z.; Shi, L.; Cronin, S. B. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 2015, 8, 666–672.

    Article  CAS  Google Scholar 

  21. Yin, Z. Y.; Yu, C.; Zhao, Z. L.; Guo, X. F.; Shen, M. Q.; Li, N.; Muzzio, M.; Li, J. R.; Liu, H.; Lin, H. H. et al. Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano Lett. 2019, 19, 8658–8663.

    Article  CAS  Google Scholar 

  22. Gao, D. F.; Zhang, Y.; Zhou, Z. W.; Cai, F.; Zhao, X. F.; Huang, W. G.; Li, Y. S.; Zhu, J. F.; Liu, P.; Yang, F. et al. Enhancing CO2 electroreduction with the metal-oxide interface. J. Am. Chem. Soc. 2017, 139, 5652–5655.

    Article  CAS  Google Scholar 

  23. Cui, H. J; Guo, Y. B.; Guo, L. M.; Wang, L.; Zhou, Z.; Peng, Z. Q. Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction. J. Mater. Chem. A 2018, 6, 18782–18793.

    Article  CAS  Google Scholar 

  24. Xiao, J.; Gao, M. R.; Liu, S. B.; Luo, J. L. Hexagonal Zn nanoplates enclosed by Zn(100) and Zn(002) facets for highly selective CO2 electroreduction to CO. ACS Appl. Mater. Interfaces 2020, 12, 31431–31438.

    Article  CAS  Google Scholar 

  25. Liu, Y. L.; Wang, R.; Lyu, Y. C.; Li, H.; Chen, L. Q. Rechargeable Li/CO2-O2 (2:1) battery and Li/CO2 battery. Energy Environ. Sci. 2014, 7, 677–681.

    Article  CAS  Google Scholar 

  26. Song, L.; Hu, C. G.; Xiao, Y.; He, J. P.; Lin, Y.; Connell, J. W.; Dai, L. M. An ultra-long life, high-performance, flexible Li-CO2 battery based on multifunctional carbon electrocatalysts. Nano Energy 2020, 71, 104595.

    Article  CAS  Google Scholar 

  27. Li, C.; Guo, Z. Y.; Yang, B. C.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y. A rechargeable Li-CO2 battery with a gel polymer electrolyte. Angew. Chem., Int. Ed. 2017, 56, 9126–9130.

    Article  CAS  Google Scholar 

  28. Li, F. J.; Chen, Y.; Tang, D. M.; Jian, Z. L.; Liu, C.; Golberg, D.; Yamada, A.; Zhou, H. S. Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energy Environ. Sci. 2014, 7, 1648–1652.

    Article  CAS  Google Scholar 

  29. Liu, B.; Sun, Y. L.; Liu, L. Y.; Chen, J. T.; Yang, B. J.; Xu, S.; Yan, X. B. Recent advances in understanding Li-CO2 electrochemistry. Energy Environ. Sci. 2019, 12, 887–922.

    Article  CAS  Google Scholar 

  30. Jiao, Y. N.; Qin, J.; Sari, H. M. K.; Li, D. J.; Li, X. F.; Sun, X. L. Recent progress and prospects of Li-CO2 batteries: mechanisms, catalysts and electrolytes. Energy Storage Mater. 2021, 34, 148–170.

    Article  Google Scholar 

  31. Pipes, R.; Bhargav, A.; Manthiram, A. Nanostructured anatase titania as a cathode catalyst for Li-CO2 batteries. ACS Appl. Mater. Interfaces 2018, 10, 37119–37124.

    Article  CAS  Google Scholar 

  32. Yuan, M. W.; Sun, Z. M.; Lin, L.; Yang, H.; Wang, D.; Yin, K. B.; Nan, C. Y.; Sun, G. B.; Li, H. F.; Ma, S. L. Atomically dispersed metal sites anchored in N-doped carbon nanosheets with enhanced Li storage performance. Mater. Chem. Front. 2020, 4, 2157–2167.

    Article  CAS  Google Scholar 

  33. Li, J. L.; Zhao, H. M.; Qi, H. C.; Sun, X. M.; Song, X. Y.; Guo, Z. Y.; Tamirat, A. G.; Liu, J.; Wang, L.; Feng, S. H. Drawing a pencil-trace cathode for a high-performance polymer-based Li-CO2 battery with redox mediator. Adv. Funct. Mater. 2019, 29, 1806863.

    Article  Google Scholar 

  34. Sun, Z. M.; He, J. L.; Yuan, M. W.; Lin, L.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Li, H. F.; Sun, G. B.; Yang, X. J. et al. Li+-clipping for edge S-vacancy MoS2 quantum dots as an efficient bifunctional electro-catalyst enabling discharge growth of amorphous Li2O2 film. Nano Energy 2019, 65, 103996.

    Article  CAS  Google Scholar 

  35. Zhang, Z.; Yang, C.; Wu, S. S.; Wang, A. N.; Zhao, L. L.; Zhai, D. D.; Ren, B.; Cao, K. Z.; Zhou, Z. Exploiting synergistic effect by integrating ruthenium-copper nanoparticles highly Co-dispersed on graphene as efficient air cathodes for Li-CO2 batteries. Adv. Energy Mater. 2019, 9, 1802805.

    Article  Google Scholar 

  36. Sun, Z. M.; Yuan, M. W.; Lin, L.; Yang, H.; Nan, C. Y.; Sun, G. B.; Li, H. F.; Yang, X. J. Perovskite La0.5Sr0.5CoO3−δ Grown on Ti3C2TxMXene nanosheets as bifunctional efficient hybrid catalysts for li-oxygen batteries. ACS Appl. Energy Mater. 2019, 2, 4144–4150.

    Article  CAS  Google Scholar 

  37. Yuan, M. W.; Wang, R.; Fu, W. B.; Lin, L.; Sun, Z. M.; Long, X. G.; Zhang, S. T.; Nan, C. Y.; Sun, G. B.; Li, H. F. Ultrathin two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 batteries. ACS Appl. Mater. Interfaces 2019, 11, 11403–11413.

    Article  CAS  Google Scholar 

  38. Zhang, Z.; Zhang, Q.; Chen, Y. N.; Bao, J.; Zhou, X. L.; Xie, Z. J.; Wei, J. P.; Zhou, Z. The first introduction of graphene to rechargeable Li-CO2 batteries. Angew. Chem., Int. Ed. 2015, 54, 6650–6653.

    Article  Google Scholar 

  39. Zhang, Z.; Wang, X. G.; Zhang, X.; Xie, Z. J.; Chen, Y. N.; Ma, L. P.; Peng, Z. Q.; Zhou, Z. Verifying the rechargeability of Li-CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene. Adv. Sci. 2018, 5, 1700567.

    Article  Google Scholar 

  40. Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y. N.; Xie, Z. J.; Wei, J. P.; Zhou, Z. Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes. Chem. Commun. 2015, 51, 14636–14639.

    Article  CAS  Google Scholar 

  41. Qie, L.; Lin, Y.; Connell, J. W.; Xu, J. T.; Dai, L. M. Highly rechargeable lithium-CO2 batteries with a boron-and nitrogencodoped holey-graphene cathode. Angew. Chem., Int. Ed. 2017, 56, 6970–6974.

    Article  CAS  Google Scholar 

  42. Mao, B. G.; Bao, T.; Yu, J.; Zheng, L. R.; Qin, J. W.; Yin, W. Y.; Cao, M. H. One-pot synthesis of MoSe2 hetero-dimensional hybrid self-assembled by nanodots and nanosheets for electrocatalytic hydrogen evolution and photothermal therapy. Nano Res. 2017, 10, 2667–2682.

    Article  CAS  Google Scholar 

  43. Wang, S. G.; Cui, Z. T.; Qin, J. W.; Cao, M. H. Thermally removable in-situ formed ZnO template for synthesis of hierarchically porous N-doped carbon nanofibers for enhanced electrocatalysis. Nano Res. 2016, 9, 2270–2283.

    Article  CAS  Google Scholar 

  44. Meng, T.; Hao, Y. N.; Zheng, L. R.; Cao, M. H. Organophosphoric acid-derived CoP quantum dots@S,N-codoped graphite carbon as a trifunctional electrocatalyst for overall water splitting and Zn-air batteries. Nanoscale, 2018, 10, 14613–14626.

    Article  CAS  Google Scholar 

  45. Zhao, D.; Meng, T.; Qin, J. W.; Wang, W.; Yin, Z. G.; Cao, M. H. Rational construction of multivoids-assembled hybrid nanospheres based on VPO4 encapsulated in porous carbon with superior lithium storage performance. ACS Appl. Mater. Interfaces 2017, 9, 1437–1445.

    Article  CAS  Google Scholar 

  46. Schulz, F.; Liljeroth, P.; Seitsonen, A. P. Benchmarking van der Waals-treated DFT: The case of hexagonal boron nitride and graphene on Ir (111). Phys. Rev. Mater. 2019, 3, 084001.

    Article  CAS  Google Scholar 

  47. Caciuc, V.; Atodiresei, N.; Callsen, M.; Lazić, P.; Blügel, S. Ab initio and semi-empirical van der Waals study of graphene-boron nitride interaction from a molecular point of view. J. Phys. Condensed Matter. 2012, 24, 424214.

    Article  Google Scholar 

  48. Lin, L.; Yuan, M. W.; Sun, Z. M.; Li, H. F.; Nan, C. Y.; Sun, G. B.; Ma, S. L. The in situ growth of ultrathin Fcc-NiPt nanocrystals on graphene for methanol and formic acid oxidation. Dalton Trans. 2018, 47, 15131–15140.

    Article  CAS  Google Scholar 

  49. Zhu, T. J.; Li, X. Y.; Zhang, Y.; Yuan, M. W.; Sun, Z. M.; Ma, S. L.; Li, H. F.; Sun, G. B. Three-dimensional reticular material NiO/Ni-graphene foam as cathode catalyst for high capacity lithium-oxygen battery. J. Electroanal. Chem. 2018, 823, 73–79.

    Article  CAS  Google Scholar 

  50. Sun, Z. M.; Lin, L.; Yuan, M. W.; Li, H. F.; Sun, G. B.; Ma, S. L.; Yang, X. J. High-purity production of ultrathin boron nitride nanosheets via shock chilling and their enhanced mechanical performance and transparency in nanocomposite hydrogels. Nanotechnology 2018, 29, 215602.

    Article  Google Scholar 

  51. Zhang, Z.; Bai, W. L.; Wang, K. X.; Chen, J. S. Electrocatalyst design for aprotic Li-CO2 batteries. Energy Environ. Sci. 2020, 13, 4717–4737.

    Article  CAS  Google Scholar 

  52. Liu, L. M.; Zhang, L. B.; Wang, K.; Wu, H.; Mao, H.; Li, L.; Sun, Z. J.; Lu, S. Y.; Zhang, D. Y.; Yu, W. et al. Understanding the dual-phase synergy mechanism in Mn2O3-Mn3O4 catalyst for efficient Li-CO2 batteries. ACS Appl. Mater. Interface. 2020, 12, 33846–33854.

    Article  CAS  Google Scholar 

  53. Xiao, X.; Tan, P.; Zhu, X. B.; Dai, Y. W.; Cheng, C.; Ni, M. Investigation on the discharge and charge behaviors of Li-CO2 batteries with carbon nanotube electrodes. ACS Sustain. Chem. Eng. 2020, 8, 9742–9750.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundations of China (Nos: 21771024 and 21871028)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genban Sun or Xiaojing Yang.

Electronic Supplementary Material

12274_2021_3620_MOESM1_ESM.pdf

Ultrathin hexagonal boron nitride as a van der Waals’ force initiator activated graphene for engineering efficient non-metal electrocatalysts of Li-CO2 battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Wang, D., Lin, L. et al. Ultrathin hexagonal boron nitride as a van der Waals’ force initiator activated graphene for engineering efficient non-metal electrocatalysts of Li-CO2 battery. Nano Res. 15, 1171–1177 (2022). https://doi.org/10.1007/s12274-021-3620-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3620-8

Keywords

Navigation