Skip to main content
Log in

A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Currently, chemotherapy is the main clinical therapy of tumors. Depressingly, most chemotherapeutic drugs such as doxorubicin and paclitaxel (PTX) have poor water solubility, leading to low bioavailability and serious side effects. Till now, although a variety of nanoparticulate drug delivery systems have been designed to ameliorate the above disadvantage of chemotherapy drugs, their application is still severely limited due to the complex preparation, poor stability, low drug loading, and premature drug release. Herein, a metal phenolic network-based drug delivery system with superior stability, satisfactory drug loading capacity, good biocompatibility, reduced undesired premature release, and excellent anti-tumor ability has been established for achieving step-by-step multiple stimuli-responsive drug delivery. Firstly, the redox-responsive dimeric paclitaxel (diPTX) prodrug was synthesized. Then diPTX@Fe&tannic acid (diPTX@Fe&TA) complex nanoparticles with satisfactory PTX loading capacity were obtained by deposition of Fe&TA network complex on the nanocore of diPTX rapidly with a simple method. The diPTX@Fe&TA nanoparticles have a hydrodynamic diameter of 152.6 ± 1.2 nm, long-term colloidal stability, and high PTX loading content of 24.7%. Besides, diPTX@Fe&TA could expose to the acidic lysosomal environment and the reduction cytoplasmic environment continuously, resulting in the sequential release of diPTX and PTX when it was phagocytosed by tumor cells. Meanwhile, PTX showed almost no release under physiological condition (pH 7.4), which effectively inhibited the undesirable premature release of PTX. More importantly, diPTX@Fe&TA could suppress the growth of tumor effectively in vivo, along with negligible toxicity for organs. This work developed a simple and novel approach for the construction of a stepwise multiple stimuli-responsive drug delivery system with superior stability and satisfactory drug loading capacity to inhibit tumor growth effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2017, 2, 22897–22914.

    Google Scholar 

  2. Hossen, S.; Hossain, M. K.; Basher, M. K.; Mia, M. N. H.; Rahman, M. T.; Uddin, M. J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019, 15, 1–18.

    Article  CAS  Google Scholar 

  3. van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W. J. M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017.

    Article  CAS  Google Scholar 

  4. Huang, H.; Yang, X. R.; Li, H. L.; Lu, H. S.; Oswald, J.; Liu, Y. M.; Zeng, J.; Jin, C. H.; Peng, X. C.; Liu, J. Y. et al. iRGD decorated liposomes: A novel actively penetrating topical ocular drug delivery strategy. Nano Res. 2020, 13, 3105–3109.

    Article  CAS  Google Scholar 

  5. Yang, J.; Wang, C.; Shi, S.; Dong, C. Nanotechnologies for enhancing cancer immunotherapy. Nano Res. 2020, 13, 2595–2616.

    Article  CAS  Google Scholar 

  6. Poon, W.; Kingston, B. R.; Ouyang, B.; Ngo, W.; Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 2020, 15, 819–829.

    Article  CAS  Google Scholar 

  7. Xu, L.; Zhao, Y. L; Owusu, K. A.; Zhuang, Z. C; Liu, Q.; Wang, Z. Y; Li, Z.; Mai, L. Recent advances in nanowire-biosystem interfaces: From chemical conversion, energy production to electrophysiology. Chem 2018, 4, 1538–1559.

    Article  CAS  Google Scholar 

  8. Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902–4906.

    Article  CAS  Google Scholar 

  9. Lin, G.; Zhang, Y.; Zhang, L.; Wang, J. Q.; Tian, Y.; Cai, W.; Tang, S. G.; Chu, C. C.; Zhou, J. J.; Mi, P. et al. Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res. 2020, 13, 238–245.

    Article  CAS  Google Scholar 

  10. Chen, H.; Li, X.; Huo, M. F.; Wang, L. Y.; Chen, Y.; Chen, W.; Wang, B L. Tumor-responsive copper-activated disulfiram for synergetic nanocatalytic tumor therapy. Nano Res. 2021, 14, 205–211.

    Article  CAS  Google Scholar 

  11. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.

    Article  CAS  Google Scholar 

  12. Ke, W. D.; Li, J. J.; Mohammed, F.; Wang, Y. H.; Tou, K.; Liu, X. Y.; Wen, P. Y.; Kinoh, H.; Anraku, Y.; Chen, H. B. et al. Therapeutic polymersome nanoreactors with tumor-specific activable cascade reactions for cooperative cancer therapy. ACS Nano 2019, 13, 2357–2369.

    CAS  Google Scholar 

  13. He, H. S.; Lu, Y.; Qi, J. P.; Zhu, Q. G.; Chen, Z. J.; Wu, W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B 2019, 9, 36–48.

    Article  Google Scholar 

  14. Jiang, T. Y.; Xu, G.; Chen, G. J.; Zheng, Y.; He, B. F.; Gu, Z. Progress in transdermal drug delivery systems for cancer therapy. Nano Res. 2020, 13, 1810–1824.

    Article  CAS  Google Scholar 

  15. Chen, Y. L.; Cheng, K. Advances of biological-camouflaged nanoparticles delivery system. Nano Res. 2020, 13, 2617–2624.

    Article  CAS  Google Scholar 

  16. Gao, C. Y.; Wang, Y.; Ye, Z. H.; Lin, Z. H.; Ma, X.; He, Q. Biomedical micro-/nanomotors: From overcoming biological barriers to in vivo imaging. Adv. Mater. 2021, 33, 2000512.

    Article  CAS  Google Scholar 

  17. Zhai, S. D.; Hu, X. L.; Hu, Y. J.; Wu, B. Y.; Xing, D. Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy. Biomaterials 2017, 121, 41–54.

    Article  CAS  Google Scholar 

  18. Yi, X. Q.; Dai, J.; Han, Y. Y.; Xu, M.; Zhang, X. J; Zhen, S. J.; Zhao, Z. J; Lou, X. D.; Xia, F. A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Commun. Biol. 2018, 1, 202.

    Article  Google Scholar 

  19. Jia, Y. P.; Song, Y.; Qu, Y.; Peng, J. R.; Shi, K.; Du, D.; Li, H.; Lin, Y. H.; Qian, Z. Y. Mesoporous PtPd nanoparticles for ligand-mediated and imaging-guided chemo-photothermal therapy of breast cancer. Nano Res. 2020, 13, 1739–1748.

    Article  CAS  Google Scholar 

  20. Yi, X. Q.; Hu, J. J.; Dai, J.; Lou, X. D.; Zhao, Z. J.; Xia, F.; Tang, B. Z. Self-guiding polymeric prodrug micelles with two aggregation-induced emission photosensitizers for enhanced chemo-photodynamic therapy. ACS Nano 2021, 15, 3026–3037.

    Article  CAS  Google Scholar 

  21. Chen, T.; Su, L. C.; Ge, X. G.; Zhang, W, M.; Li, Q. Q.; Zhang, X.; Ye, J. M.; Lin, L. S.; Song, J. B.; Yang, H. H. Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemoradiotherapy using hybrid plasmonic-fluorescent assemblies. Nano Res. 2020, 13, 3268–3277.

    CAS  Google Scholar 

  22. Cai, K. M.; He, X.; Song, Z. Y.; Yin, Q.; Zhang, Y. F.; Uckun, F. M.; Jiang, C.; Cheng, J. J. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J. Am. Chem. Soc. 2015, 137, 3458–3461.

    Article  CAS  Google Scholar 

  23. Su, L.; Li, R. C.; Khan, S.; Clanton, R.; Zhang, F. W.; Lin, Y. N.; Song, Y.; Wang, H.; Fan, J. W.; Hernandez, S. et al. Chemical design of both a glutathione-sensitive dimeric drug guest and a glucose-derived nanocarrier host to achieve enhanced osteosarcoma lung metastatic anticancer selectivity. J. Am. Chem. Soc. 2018, 140, 1438–1446.

    Article  CAS  Google Scholar 

  24. Lin, C. C.; Tong, F.; Liu, R.; Xie, R.; Lei, T.; Chen, Y. X.; Yang, Z. H.; Gao, H. L.; Yu, X. R. GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy. Acta Pharm. Sin. B 2020, 10, 2348–2361.

    Article  CAS  Google Scholar 

  25. Liu, R.; Yu, M. N.; Yang, X. T.; Umeshappa, C. S.; Hu, C.; Yu, W. Q.; Qin, L.; Huang, Y.; Gao, H L. Linear chimeric triblock molecules self-assembled micelles with controllably transformable property to enhance tumor retention for chemo-photodynamic therapy of breast cancer. Adv. Funct. Mater. 2019, 29, 1808462.

    Article  Google Scholar 

  26. Yang, X. T.; Hu, C.; Tong, F.; Liu, R.; Zhou, Y.; Qin, L.; Ouyang, L.; Gao, H L. Tumor microenvironment-responsive dual drug dimer-loaded PEGylated bilirubin nanoparticles for improved drug delivery and enhanced immune-chemotherapy of breast cancer. Adv. Funct. Mater. 2019, 29, 1901896.

    Article  Google Scholar 

  27. Zhang, R. J.; Chen, J.; Mao, L. Z.; Guo, Y. J.; Hao, Y. T.; Deng, Y. D.; Han, X.; Li, Q. J.; Liao, W. Z.; Yuan, M. M. Nobiletin triggers reactive oxygen species-mediated pyroptosis through regulating autophagy in ovarian cancer cells. J. Agric. Food Chem. 2020, 68, 1326–1336.

    Article  CAS  Google Scholar 

  28. Li, K.; Xiao, G.; Richardson, J. J.; Tardy, B. L.; Ejima, H.; Huang, W.; Guo, J. L.; Liao, X. P.; Shi, B. Targeted therapy against metastatic melanoma based on self-assembled metal-phenolic nanocomplexes comprised of green tea catechin. Adv. Sci. 2019, 6, 1801688.

    Article  Google Scholar 

  29. Liu, T.; Zhang, M. K.; Liu, W. L.; Zeng, X.; Song, X. L.; Yang, X. Q.; Zhang, X. Z.; Feng, J. Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications. ACS Nano 2018, 12, 3917–3927.

    Article  CAS  Google Scholar 

  30. Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; van Koeverden, M. P.; Such, G. K.; Cui, J. W.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154–157.

    Article  CAS  Google Scholar 

  31. Guo, J. L; Ping, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J. J.; Yan, Y.; Peter, K.; von Elverfeldt, D.; Hagemeyer, C. E. et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem., Int. Edit. 2014, 53, 5546–5551.

    Article  CAS  Google Scholar 

  32. Shen, G. Z.; Xing, R. R.; Zhang, N.; Chen, C. J.; Ma, G. H.; Yan, X H. Interfacial cohesion and assembly of bioadhesive molecules for design of long-term stable hydrophobic nanodrugs toward effective anticancer therapy. ACS Nano 2016, 10, 5720–5729.

    Article  CAS  Google Scholar 

  33. Yang, B.; Zhou, S.; Zeng, J.; Zhang, L. P.; Zhang, R. H.; Liang, K.; Xie, L.; Shao, B.; Song, S. L.; Huang, G. et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020, 13, 1013–1019.

    Article  CAS  Google Scholar 

  34. Liang, H. S.; Li, J.; He, Y.; Xu, W.; Liu, S. L.; Li, Y.; Chen, Y. J; Li, B. Engineering multifunctional films based on metal-phenolic networks for rational pH-responsive delivery and cell imaging. ACS Biomater. Sci. Eng. 2016, 2, 317–325.

    Article  CAS  Google Scholar 

  35. Kim, S.; Philippot, S.; Fontanay, S.; Duval, R. E.; Lamouroux, E.; Canilho, N.; Pasc, A. pH- and glutathione-responsive release of curcumin from mesoporous silica nanoparticles coated using tannic acid-Fe(III) complex. RSC Adv. 2015, 5, 90550–90558.

    Article  CAS  Google Scholar 

  36. Abouelmagd, S. A.; Abd Ellah, N. H.; Amen, O.; Abdelmoez, A.; Mohamed, N. G. Self-assembled tannic acid complexes for pH-responsive delivery of antibiotics: Role of drug-carrier interactions. Int. J. Pharm. 2019, 562, 76–85.

    Article  CAS  Google Scholar 

  37. Meng, X. Y.; Chen, L. Z.; Lv, R. M.; Liu, M.; He, N. Y.; Wang, Z F. A metal-phenolic network-based multifunctional nanocomposite with pH-responsive ROS generation and drug release for synergistic chemodynamic/photothermal/chemo-therapy. J. Mat. Chem. B 2020, 8, 2177–2188.

    Article  CAS  Google Scholar 

  38. Nichols, J. W.; Bae, Y. H. EPR: Evidence and fallacy. J. Control. Release 2014, 190, 451–464.

    Article  CAS  Google Scholar 

  39. Yin, S. P.; Huai, J.; Chen, X.; Yang, Y.; Zhang, X. X.; Gan, Y.; Wang, G. J; Gu, X. C; Li, J. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid. Acta Biomater. 2015, 26, 274–285.

    Article  CAS  Google Scholar 

  40. Zhang, Y. R.; Wang, J. N.; Xiao, J. Y.; Fang, T. L.; Hu, N.; Li, M. H.; Deng, L. F.; Cheng, Y. S.; Zhu, Y. Q.; Cui, W. G. An electrospun fiber-covered stent with programmable dual drug release for endothelialization acceleration and lumen stenosis prevention. Acta Biomater. 2019, 94, 295–305.

    Article  CAS  Google Scholar 

  41. Zhen, S. J.; Wang, S. W.; Li, S. W.; Luo, W. W.; Gao, M.; Ng, L. G.; Goh, C. C.; Qin, A. J.; Zhao, Z. J.; Liu, B. et al. Efficient red/near-infrared fluorophores based on benzo[1,2-b: 4,5-b′]Dithiophene 1,1,5,5-Tetraoxide for targeted photodynamic therapy and in vivo two-photon fluorescence bioimaging. Adv. Funct. Mater. 2018, 28, 1706945.

    Article  Google Scholar 

  42. Perry, J. L.; Reuter, K. G.; Luft, J. C.; Pecot, C. V.; Zamboni, W.; DeSimone, J. M. Mediating passive tumor accumulation through particle size, tumor type, and location. Nano Lett. 2017, 17, 2879–2886.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 82060599 and 52003006), the Open Project of Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education (No. XN201911), the Natural Science Foundation of Jiangxi Province (No. 20202BABL213018), the Science and Technology Project of the Education Department of Jiangxi Province (Nos. GJJ190795 and GJJ190827), the Research Fund of Gannan Medical University (Nos. QD201903, QD201912, ZD201901, YQ202003, and QD201825), and Undergraduate Science and Technology Innovation Project of Gannan Medical University (No. BKSZR201903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan He, Ying Kuang or Qitong Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Zeng, W., Wang, C. et al. A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy. Nano Res. 15, 1205–1212 (2022). https://doi.org/10.1007/s12274-021-3626-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3626-2

Keywords

Navigation