Skip to main content

Advertisement

Log in

Generalized proportional reversed hazard rate distributions with application in medicine

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

Proportional reversed hazard rate distribution family plays an important role in the reliability and lifetime data modelling. In this manuscript this family of distributions is generalized in order to enhance its modelling capability. Considering a special case, we introduce the extended generalized exponential distribution. Its mathematical properties are also studied. New model is applied in fitting levels of TSH hormone and remission times of bladder cancer patients. We believe these results may attract applied statisticians especially those who are in charge with life time data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen P, Borgan O, Gill R, Keiding N (1993) Statistical models based on counting processes. Springer, New York

    Book  Google Scholar 

  • Andersen P, Borgan O, Gill R, Keiding N (2009) Continuous bivariate distributions, 2nd edn. Springer, New York

    Google Scholar 

  • Arnold B, Beaver R (2000) Hidden truncation models. Sankhya Ser A 62:23–35

    MathSciNet  MATH  Google Scholar 

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  • Block H, Savits T, Sing H (1998) The reversed hazard rate function. Probab Eng Inform Sci 12:69–90

    Article  MathSciNet  Google Scholar 

  • Burr I (1942) Cumulative frequency distribution. Ann Math Stat 13:215–232

    Article  Google Scholar 

  • Chandra S (1977) On the mixtures of probability distributions. Scand J Stat 4(3):105–112

    MathSciNet  MATH  Google Scholar 

  • Chechile R (2011) Properties of reverse hazard functions. J Math Psychol 55:203–222

    Article  MathSciNet  Google Scholar 

  • Cordeiro G, Gomes A, da Silva C, Ortega E (2017) A useful extension of the Burr iii distribution. J Stat Distrib App 4(24):1–15

    MATH  Google Scholar 

  • Cox D (1972) Regression models and life-tables. J Roy Stat Soc B Met 34:187–220

    MathSciNet  MATH  Google Scholar 

  • Di Crescenzo AD (2000) Some results on proportional reversed hazard rate function. Stat Probab Lett 50:313–321

    Article  Google Scholar 

  • Domma F, Popovic B, Nadarajah S (2015) An extension of Azzalini’s method. J Comput Appl Math 278:37–47

    Article  MathSciNet  Google Scholar 

  • Domma F, Condino F, Popovic B (2017) A new generalized weighted Weibull distribution with decreasing, increasing, upside-down bathtub, N-shape and M-shape hazard rate. J Appl Stat 44:2978–2993

    Article  MathSciNet  Google Scholar 

  • Everitt B (2002) A handbook of statistical analysis using S-plus, 2nd edn. Chapman Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Finkelstein M (2002) On the reversed hazard rate function. Reliab Eng Syst Safe 78:71–75

    Article  Google Scholar 

  • Gross S, Huber-Carol C (1992) Regression models for truncated survival data. Scand J Stat 19:193–213

    MathSciNet  MATH  Google Scholar 

  • Guillaume R, François D (2014) Learning negative mixture models by tensor decompositions. arXiv:1403.4224

  • Gupta C, Gupta R (2007) Proportional reversed hazard rate model and its applications. J Stat Plan Infer 137:3525–3536

    Article  MathSciNet  Google Scholar 

  • Gupta R, Kundu D (1999) Generalized exponential distributions. Aust N Z J Stat 41:173–188

    Article  MathSciNet  Google Scholar 

  • Gupta R, Nanda A (2001) Some results on reversed hazard rate ordering. Commun Stat Theor Methods 30:2447–2457

    Article  MathSciNet  Google Scholar 

  • Gupta R, Gupta R, Gupta P (1998) Modeling failure time data by Lehman alternatives. Commun Stat Theor Methods 27:887–904

    Article  MathSciNet  Google Scholar 

  • Kalbfleisch J, Lawless J (1989) Inference based on retrospective ascertainment: an analysis of the data on transfusion-related aids. J Am Stat Assoc 84:360–372

    Article  MathSciNet  Google Scholar 

  • Lawless J (2000) Introduction to two classics in reliability theory. Technometrics 42:5–6

    Article  Google Scholar 

  • Lee C, Famoye F, Olumolade O (2000) Beta-Weibull distribution: some properties and applications to censored data. J Mod Appl Stat Methods 6(1):173–186

    Article  Google Scholar 

  • Lee E, Wang J (2003) Statistical methods for survival data analysis, 3rd edn. Wiley, New York

    Book  Google Scholar 

  • Marshall A, Olkin I (1967) A generalized bivariate exponential distribution. J Appl Probab 4:291–302

    Article  MathSciNet  Google Scholar 

  • Marshall A, Olkin I (2007) Life distributions: structure of nonparametric, semiparametric, and parametric families. Springer, New York

    MATH  Google Scholar 

  • Mudholkar G, Srivastava D (1993) Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans Reliab 42:299–302

    Article  Google Scholar 

  • Muhammed H (2020) On a bivariate generalized inverted Kumaraswamy distribution. Physica A 553:124281

    Article  MathSciNet  Google Scholar 

  • Popović BV, Ristić MM, Genç Aİ (2020) Dependence properties of multivariate distributions with proportional hazard rate marginal. Appl Math Model 77:182–198

    Article  MathSciNet  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Ross S, Shanthikumar J, Zhu Z (2005) On increasing failure rate random variables. J Appl Probab 42:797–806

    Article  MathSciNet  Google Scholar 

  • Sankaran P, Gleja V (2008) Proportional reversed hazard and frailty models. Metrika 68:333–342

    Article  MathSciNet  Google Scholar 

  • Sarabia J, Jorda V, Prieto F (2019) On a new Pareto-type distribution with applications in the study of income inequality and risk analysis. Physica A 527:121277

    Article  MathSciNet  Google Scholar 

  • Shaked M, Shanthikumar J (1994) Stochastic orders and their applications. Academic Press, New York

    MATH  Google Scholar 

  • Titterington D, Adrian F, Makov U (1985) Statistical analysis of finite mixture distributions. Wiley, New York

    MATH  Google Scholar 

  • Topp C, Leone F (1955) A family of J-shaped frequency functions. J Am Stat Assoc 50:209–219

    Article  MathSciNet  Google Scholar 

  • Veres-Ferrer E, Pavia J (2014) On the relationship between the reversed hazard rate and elasticity. Stat Pap 55:275–284

    Article  MathSciNet  Google Scholar 

  • Wolfram Research (2012) Mathematica, Version 9.0. https://www.wolfram.com/mathematica

  • Zea L, Silva R, Bourguignon M, Santos A, Cordeiro G (2012) The beta exponentiated pareto distribution with application to bladder cancer susceptibility. Int J Stat Probab 1:8–19

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank an associate editor and three anonymous reviewers for their valuable comments and suggestions which helped to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Božidar V. Popović.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of the Theorem 1

The conditional CDF of the random variable \(X=Z|Y\le 1\) is

$$\begin{aligned} F_{X=Z|Y\le 1}(x)=\frac{ \int ^{x}_{0} \int ^{1}_{0} f_{Z,Y}(z,y) dydz }{\int ^{1}_{0}f_{Y}(y)dy}. \end{aligned}$$

Using the result obtained in Lemma 2 and by substitution \(G(x;\varvec{\xi })=u,\) the marginal PDF of the random variable Y is obtained as

$$\begin{aligned} f_{Y}(y;\varvec{\alpha },\theta ,\varvec{\xi })=&\alpha _{1}\alpha _{2} \left\{ (1+\theta )\int _0^1 u^{\alpha _1-1}\,Q(u;\varvec{\xi })\,g\left( yQ(u;\varvec{\xi });\varvec{\xi }\right) \,{\left( G\left( yQ(u;\varvec{\xi })\right) \right) }^{\alpha _2-1}\,\rm{d}u\right. \\&-\left. 2\theta \int _0^1 u^{\alpha _1-1}\,Q(u;\varvec{\xi })\,g\left( yQ(u;\varvec{\xi });\varvec{\xi }\right) \,{\left( G\left( yQ(u;\varvec{\xi });\varvec{\xi }\right) \right) }^{2\alpha _2-1}\,\rm{d}u\right. \\&-\left. 2\theta \int _0^1 u^{2\alpha _1-1}\,Q(u;\varvec{\xi })\,g\left( yQ(u;\varvec{\xi });\varvec{\xi }\right) \,{\left( G\left( yQ(u;\varvec{\xi });\varvec{\xi }\right) \right) }^{\alpha _2-1}\,\rm{d}u \right. \\&+\left. 4\theta \int _0^1 u^{2\alpha _1-1}\,Q(u;\varvec{\xi })\,g\left( yQ(u;\varvec{\xi });\varvec{\xi }\right) \,{\left( G\left( yQ(u;\varvec{\xi });\varvec{\xi }\right) \right) }^{2\alpha _2-1}\,\rm{d}u \right\} \,, \end{aligned}$$

where \(Q(u;\varvec{\xi })=G^{-1}(u;\varvec{\xi })\,.\)

Now we need to calculate \(F_Y(1)=P\left\{ Y<1\right\} .\) So,

$$\begin{aligned}&\int ^{1}_{0}f_{Y}(y;\varvec{\alpha },\theta ,\varvec{\xi })dy=\alpha _1\,\alpha _2\,\left\{ \frac{1+\theta }{\alpha _2} \int _0^1\,u^{\alpha _1-1}\,{\left( G(\alpha Q(u;\varvec{\xi }));\varvec{\xi }\right) }^{\alpha _2}\rm{d}u\right. \\&\qquad \left. -\frac{\theta }{\alpha _2}\int _0^1\,u^{\alpha _1-1}\,\left[ G(\alpha Q(u;\varvec{\xi });\varvec{\xi })\right] ^{2\alpha _2}\rm{d}u-\frac{2\theta }{\alpha _2}\int _0^1\,u^{2\alpha _1-1}\,{\left( G(\alpha Q(u;\varvec{\xi });\varvec{\xi })\right) }^{\alpha _2}\rm{d}u\right. \\&\qquad \left. +\frac{2\theta }{\alpha _2}\int _0^1\,u^{2\alpha _1-1}\,{\left( G(\alpha Q(u;\varvec{\xi });\varvec{\xi })\right) }^{2\alpha _2}\rm{d}u\right\} \,. \end{aligned}$$

Using \(G(Q(u;\varvec{\xi });\varvec{\xi })=u\), we easily find

$$\begin{aligned} F_Y(1)&=\frac{\alpha _1}{\alpha _1+\alpha _2}+\theta \,\frac{\alpha _1\,\alpha _2\,(\alpha _1-\alpha _2)}{(\alpha _1+\alpha _2)(2\alpha _1+\alpha _2)(\alpha _1+2\alpha _2)}\,. \end{aligned}$$
(14)

Using substitution \(G(yz;\varvec{\xi })=u\), one can obtain

$$\begin{aligned} \int ^{1}_{0}f_{Z,Y}(z,y)dy=&\alpha _1\left\{ (1+\theta )\,g(z;\varvec{\xi })\, {\left( G(z;\varvec{\xi })\right) }^{\alpha _1+\alpha _2-1}\,-\theta \, g(z;\varvec{\xi })\,{\left( G(z;\varvec{\xi })\right) }^{\alpha _1+2\alpha _2-1}\right. \nonumber \\&\left. -2\theta g(z;\varvec{\xi }){\left( G(z;\varvec{\xi })\right) }^{2\alpha _1+\alpha _2-1}+ 2\theta {\left( G(z;\varvec{\xi })\right) }^{2\alpha _1+2\alpha _2-1}\right\} \,. \end{aligned}$$

Finally we have

$$\begin{aligned}&\int ^{x}_{0} \left[ \int ^{1}_{0}f_{Z,Y}(z,y)dy\right] dz\nonumber \\&\quad =\alpha _1\left\{ \frac{1+\theta }{\alpha _1+\alpha _2}\,{\left( G(x;\varvec{\xi })\right) }^{\alpha _1+\alpha _2} -\frac{\theta }{\alpha _1+2\alpha _2}{\left( G(x;\varvec{\xi })\right) }^{\alpha _1+2\alpha _2} \right. \nonumber \\&\qquad \left. -\frac{2\theta }{2\alpha _1+\alpha _2}{\left( G(x;\varvec{\xi })\right) }^{2\alpha _1+\alpha _2} +\frac{\theta }{\alpha _1+\alpha _2}{\left( G(x;\varvec{\xi })\right) }^{2\alpha _1+2\alpha _2}\right\} \,. \end{aligned}$$
(15)

The interchanging the order of integration is allowed by Tonelli’s theorem.

By combining (14)–(15), we obtain the CDF of \(X=Z|Y\le 1.\) If we differentiate it with respect to x, one can verify that the conditional PDF \(f_{X=Z|Y\le 1}(x; \varvec{\alpha }, \theta ,\varvec{\xi } )\) coincides with (5).

Appendix B. The likelihood equations

$$\begin{aligned} \dfrac{\partial l_k}{\partial \alpha _1} =&\dfrac{1}{\alpha _1}+\dfrac{1}{a_1} \cdot \dfrac{\partial a_1 }{\partial \alpha _1} -\dfrac{1}{a_2 + \theta a_3} \left[ \dfrac{\partial a_2 }{\partial \alpha _1} + \theta \,\, \dfrac{\partial a_3 }{\partial \alpha _1} \right] \\&+\log \left( G(x_{k};\varvec{\xi }) \right) + \dfrac{\theta }{1+\theta c} \cdot \dfrac{\partial c}{\partial \alpha _1}\\ \dfrac{\partial l_k}{\partial \alpha _2} =&\dfrac{\partial a_1 }{\partial \alpha _2} -\dfrac{1}{a_2 + \theta a_3}\left[ \dfrac{\partial a_2 }{\partial \alpha _2} + \theta \dfrac{\partial a_3 }{\partial \alpha _2} \right] \\&+\log \left( G(x_{k};\varvec{\xi }) \right) + \dfrac{\theta }{1+\theta c}\cdot \dfrac{\partial c}{\partial \alpha _2}\\ \dfrac{\partial l_k}{\partial \theta } =&-\dfrac{a_3}{a_2 + \theta a_3} + \dfrac{c}{1+\theta c}\\ \dfrac{\partial l_k}{\partial \xi _j} =&\dfrac{1}{ g(x_{k};\varvec{\xi }) } \cdot \dfrac{\partial g(x_{k};\varvec{\xi })}{\partial \xi _j} + \dfrac{\alpha _1 + \alpha _2 -1}{ G(x_{k};\varvec{\xi }) } \cdot \dfrac{\partial G(x_{k};\varvec{\xi })}{\partial \xi _j} + \dfrac{\theta }{1+\theta c} \cdot \dfrac{\partial c}{\partial \xi _j} \end{aligned}$$

for \(j=1,\dots ,q\), where

$$\begin{aligned} \dfrac{\partial a_1}{\partial \alpha _1} =\,&a_1 \left\{ \dfrac{2}{\alpha _1 + \alpha _2} + \dfrac{2}{2\alpha _1 + \alpha _2} + \dfrac{1}{\alpha _1 + 2\alpha _2} \right\} \,,\\ \dfrac{\partial a_1}{\partial \alpha _2} =\,&a_1 \left\{ \dfrac{2}{\alpha _1 + \alpha _2} + \dfrac{1}{2\alpha _1 + \alpha _2} + \dfrac{ 2 }{\alpha _1 + 2\alpha _2} \right\} \,,\\ \dfrac{\partial a_2}{\partial \alpha _1} =\,&a_2 \left\{ \dfrac{1}{\alpha _1} + \dfrac{ 1}{\alpha _1 + \alpha _2} + \dfrac{2}{2\alpha _1 + \alpha _2} + \dfrac{ 1}{\alpha _1 + 2\alpha _2} \right\} \,,\\ \dfrac{\partial a_2}{\partial \alpha _2} =\,&a_2 \left\{ \dfrac{1}{\alpha _1 + \alpha _2} + \dfrac{ 1}{2\alpha _1 + \alpha _2} + \dfrac{2 }{\alpha _1 + 2\alpha _2} \right\} \,,\\ \dfrac{\partial a_3}{\partial \alpha _1} =\,&\dfrac{a_3}{\alpha _1 } + 2 \alpha _{1}^{2} \alpha _{2}\,,\\ \dfrac{\partial a_3}{\partial \alpha _2} =\,&\dfrac{a_3}{\alpha _2 } - 2 \alpha _{1} \alpha _{2}^{2} \,,\\ \dfrac{\partial c}{\partial \alpha _1} =&- 2 \left( G(x_{k};\varvec{\xi }) \right) ^{\alpha _1} \log \left( G(x_{k};\varvec{\xi }) \right) \left[ 1- \left( G(x_{k};\varvec{\xi }) \right) ^{\alpha _2} \right] \,,\\ \dfrac{\partial c}{\partial \alpha _2} =\,&- \left( G(x_{k};\varvec{\xi }) \right) ^{\alpha _2} \log \left( G(x_{k};\varvec{\xi }) \right) \left[ 1- 2\left( G(x_{k};\varvec{\xi }) \right) ^{\alpha _1} \right] \end{aligned}$$

and

$$\begin{aligned} \dfrac{\partial c}{\partial \xi _j}&= - \dfrac{\partial G(x_{k};\varvec{\xi })}{\partial \xi _j} \left\{ 2\alpha _1 \left( G(x_{k};\varvec{\xi }) \right) ^{\alpha _1 -1} + \alpha _{2} \left( G(x_{k};\varvec{\xi }) \right) ^{\alpha _2 -1} \right. \\&\left. - 2(\alpha _1 + \alpha _2) \left( G(x_{k};\varvec{\xi }) \right) ^{\alpha _1 + \alpha _2 -1} \right\} \,. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popović, B.V., Genç, A.İ. & Domma, F. Generalized proportional reversed hazard rate distributions with application in medicine. Stat Methods Appl 31, 459–480 (2022). https://doi.org/10.1007/s10260-021-00583-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-021-00583-5

Keywords

Mathematics Subject Classification

Navigation