Skip to main content
Log in

Alterations of gut microbiome and metabolite profiles in choledocholithiasis concurrent with cholangitis

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Background and aims

Gut microbiota and their metabolic products might play important roles in regulating the pathogenesis of choledocholithiasis concurrent with cholangitis (CC). The aim of this study was to explore the characteristic gut dysbiosis, metabolite profiles and the possible roles in patients with CC.

Methods

A case–control study was carried out to analyze the alterations in the intestinal microbiota and their metabolites in patients with CC (n = 25) compared with healthy controls (HCs) (n = 25) by metagenomic sequencing to define the gut microbiota community and liquid chromatography/mass spectrometry (LC/MS) analysis to characterize the metabolite profiles.

Results

Significantly reduced Shannon diversity index (p = 0.043) and differential overall fecal microbiota community in CCs were observed. Twelve dominant altered species were identified and analyzed (LDA score > 3.0, p < 0.05) (Q value < 0.05), including unclassified_f_Enterobacteriaceae, Escherichia_coli, Roseburia_faecis and Eubacterium rectale. Moreover, the levels of KEGG pathways related to biofilm formation of Escherichia coli, lipopolysaccharide (LPS) biosynthesis, and the metabolism of propanoate and glutathione in CCs were significantly altered. Finally, 47 markedly changed metabolites (VIP > 1.0 and p < 0.05), including low level of kynurenic acid (KYNA) and high concentration of N-palmitoylsphingosine involving tryptophan metabolism and sphingolipid signaling pathways, were identified to validate aberrant metabolic patterns in CCs, and multiple correlated metabolic modules involving bile inflammation were altered in CCs.

Conclusion

Our study provides novel insights into compositional and functional alterations in the gut microbiome and metabolite profiles in CC and the underlying mechanisms between gut microbiota and bile inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The metagenome sequencing data are available (at https://cloud.majorbio.com). The data from Changzheng Hospital are available upon reasonable request from the corresponding author (Y.L.). The data from Changzheng Hospital are not publicly available, because they contain protected patient privacy information. The other data relevant to the study are included in the article or uploaded as supplementary information.

Abbreviations

CC:

Choledocholithiasis concurrent with cholangitis

HC:

Healthy control

ERCP:

Endoscopic retrograde cholangiopancreatography

SCFA:

Short-chain fatty acid

NAFLD:

Nonalcoholic fatty liver disease

LC/MS:

Chromatography/mass spectrometry

KEGG:

Kyoto encyclopedia of genes and genomes

QIIME:

Quantitative insights into microbial ecology

PCoA:

Principal coordinate analysis

LDA:

Linear discriminant analysis

LEfSe:

Linear discriminant analysis effect size

VIP:

Variable importance in the projection

WBC:

White blood cell

CRP:

C-reaction protein

KYNA:

Kynurenic acid

TLRs:

Toll-like receptors

NO:

Nitric oxide

LPS:

Lipopolysaccharide

References

  1. Frossard JL, Morel PM. Detection and management of bile duct stones. Gastrointest Endosc. 2010;72(4):808–16. https://doi.org/10.1016/j.gie.2010.06.033.

    Article  PubMed  Google Scholar 

  2. Peery AF, Crockett SD, Barritt AS, et al. Burden of gastrointestinal, liver, and pancreatic diseases in the United States. Gastroenterology. 2015;149(7):1731-1741.e3. https://doi.org/10.1053/j.gastro.2015.08.045.

    Article  PubMed  Google Scholar 

  3. ASGE Standards of Practice Committee, Buxbaum JL, Abbas Fehmi SM, et al. ASGE guideline on the role of endoscopy in the evaluation and management of choledocholithiasis. Gastrointest Endosc. 2019;89(6):1075–105. https://doi.org/10.1016/j.gie.2018.10.001.

    Article  Google Scholar 

  4. Lai EC, Mok FP, Tan ES, et al. Endoscopic biliary drainage for severe acute cholangitis. N Engl J Med. 1992;326(24):1582–6. https://doi.org/10.1056/NEJM199206113262401.

    Article  CAS  PubMed  Google Scholar 

  5. Negm AA, Schott A, Vonberg RP, et al. Routine bile collection for microbiological analysis during cholangiography and its impact on the management of cholangitis. Gastrointest Endosc. 2010;72(2):284–91. https://doi.org/10.1016/j.gie.2010.02.043.

    Article  PubMed  Google Scholar 

  6. Lammert F, Gurusamy K, Ko CW, et al. Gallstones. Nat Rev Dis Primers. 2016;2:16024. https://doi.org/10.1038/nrdp.2016.24.

    Article  PubMed  Google Scholar 

  7. Van Erpecum KJ, Van Berge-Henegouwen GP. Gallstones: an intestinal disease? Gut. 1999;44(3):435–8. https://doi.org/10.1136/gut.44.3.435.

    Article  PubMed  Google Scholar 

  8. Wang HH, Portincasa P, Mendez-Sanchez N, et al. Effect of ezetimibe on the prevention and dissolution of cholesterol gallstones. Gastroenterology. 2008;134(7):2101–10. https://doi.org/10.1053/j.gastro.2008.03.011.

    Article  CAS  PubMed  Google Scholar 

  9. Vítek L, Carey MC. New pathophysiological concepts underlying pathogenesis of pigment gallstones. Clin Res Hepatol Gastroenterol. 2012;36(2):122–9. https://doi.org/10.1016/j.clinre.2011.08.010.

    Article  CAS  PubMed  Google Scholar 

  10. Tripathi A, Debelius J, Brenner DA, et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol. 2018;15(7):397–411. https://doi.org/10.1038/s41575-018-0011-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun J, Chang EB. Exploring gut microbes in human health and disease: pushing the envelope. Genes Dis. 2014;1(2):132–9. https://doi.org/10.1016/j.gendis.2014.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang Q, Jiao L, He C, et al. Alteration of gut microbiota in association with cholesterol gallstone formation in mice. BMC Gastroenterol. 2017;17(1):74. https://doi.org/10.1186/s12876-017-0629-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Verdier J, Luedde T, Sellge G. Biliary mucosal barrier and microbiome. Viszeralmedizin. 2015;31(3):156–61. https://doi.org/10.1159/000431071.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sayin SI, Wahlström A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225–35. https://doi.org/10.1016/j.cmet.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  15. Wu T, Zhang Z, Liu B, et al. Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genomics. 2013;14:669. https://doi.org/10.1186/1471-2164-14-669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu J, Yan Q, Luo F, et al. Acute cholecystitis associated with infection of Enterobacteriaceae from gut microbiota. Clin Microbiol Infect. 2015;21(9):851.e1-9. https://doi.org/10.1016/j.cmi.2015.05.017.

    Article  CAS  Google Scholar 

  17. Capoor MR, Nair D, Rajni, et al. Microflora of bile aspirates in patients with acute cholecystitis with or without cholelithiasis: a tropical experience. Braz J Infect Dis. 2008;12(3):222–5. https://doi.org/10.1590/s1413-86702008000300012.

    Article  PubMed  Google Scholar 

  18. Chen B, Fu SW, Lu L, et al. A preliminary study of biliary microbiota in patients with bile duct stones or distal cholangiocarcinoma. Biomed Res Int. 2019;2019:1092563. https://doi.org/10.1155/2019/1092563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feng J, Zhao F, Sun J, et al. Alterations in the gut microbiota and metabolite profiles of thyroid carcinoma patients. Int J Cancer. 2019;144(11):2728–45. https://doi.org/10.1002/ijc.32007.

    Article  CAS  PubMed  Google Scholar 

  20. Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol. 2020;72(3):558–77. https://doi.org/10.1016/j.jhep.2019.10.003.

    Article  CAS  PubMed  Google Scholar 

  21. Wei Y, Li Y, Yan L, et al. Alterations of gut microbiome in autoimmune hepatitis. Gut. 2020;69(3):569–77. https://doi.org/10.1136/gutjnl-2018-317836.

    Article  CAS  PubMed  Google Scholar 

  22. Xue F, Nan X, Sun F, et al. Metagenome sequencing to analyze the impacts of thiamine supplementation on ruminal fungi in dairy cows fed high-concentrate diets. AMB Express. 2018;8(1):159. https://doi.org/10.1186/s13568-018-0680-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li R, Li Y, Kristiansen K, et al. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24(5):713–4. https://doi.org/10.1093/bioinformatics/btn025.

    Article  CAS  PubMed  Google Scholar 

  24. Peng W, Yi P, Yang J, et al. Association of gut microbiota composition and function with a senescence-accelerated mouse model of Alzheimer’s Disease using 16S rRNA gene and metagenomic sequencing analysis. Aging (Albany NY). 2018;10(12):4054–65. https://doi.org/10.18632/aging.101693.

    Article  CAS  Google Scholar 

  25. Quinn RA, Melnik AV, Vrbanac A, et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579(7797):123–9. https://doi.org/10.1038/s41586-020-2047-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adams LA, Wang Z, Liddle C, et al. Bile acids associate with specific gut microbiota, low-level alcohol consumption and liver fibrosis in patients with non-alcoholic fatty liver disease. Liver Int. 2020;40(6):1356–65. https://doi.org/10.1111/liv.14453.

    Article  CAS  PubMed  Google Scholar 

  27. Cresci GAM. Is it time to consider gut microbiome readouts for precision diagnosis and treatment of alcoholic liver disease? Hepatology. 2020;72(1):4–6. https://doi.org/10.1002/hep.31245.

    Article  PubMed  Google Scholar 

  28. Schwabe RF, Greten TF. Gut microbiome in HCC—mechanisms, diagnosis and therapy. J Hepatol. 2020;72(2):230–8. https://doi.org/10.1016/j.jhep.2019.08.016.

    Article  CAS  PubMed  Google Scholar 

  29. Friedfeld MR, Zhong H, Ruck RT, et al. Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction. Science. 2018;360(6391):888–93. https://doi.org/10.1126/science.aar6117.

    Article  CAS  PubMed  Google Scholar 

  30. Ren Z, Li A, Jiang J, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut. 2019;68(6):1014–23. https://doi.org/10.1136/gutjnl-2017-315084.

    Article  CAS  PubMed  Google Scholar 

  31. Di Ciaula A, Wang DQ, Portincasa P. An update on the pathogenesis of cholesterol gallstone disease. Curr Opin Gastroenterol. 2018;34(2):71–80. https://doi.org/10.1097/MOG.0000000000000423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levy M, Kolodziejczyk AA, Thaiss CA, et al. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219–32. https://doi.org/10.1038/nri.2017.7.

    Article  CAS  PubMed  Google Scholar 

  33. Razaghi M, Tajeddin E, Ganji L, et al. Colonization, resistance to bile, and virulence properties of Escherichia coli strains: unusual characteristics associated with biliary tract diseases. Microb Pathog. 2017;111:262–8. https://doi.org/10.1016/j.micpath.2017.08.043.

    Article  PubMed  Google Scholar 

  34. Zhao J, Wang Q, Zhang J. Changes in microbial profiles and antibiotic resistance patterns in patients with biliary tract infection over a six-year period. Surg Infect (Larchmt). 2019;20(6):480–5. https://doi.org/10.1089/sur.2019.041.

    Article  Google Scholar 

  35. Mizutani T, Mitsuoka T. Inhibitory effect of some intestinal bacteria on liver tumorigenesis in gnotobiotic C3H/He male mice. Cancer Lett. 1980;11(2):89–95. https://doi.org/10.1016/0304-3835(80)90098-1.

    Article  CAS  PubMed  Google Scholar 

  36. Pittayanon R, Lau JT, Leontiadis GI, et al. Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology. 2020;158(4):930-946.e1. https://doi.org/10.1053/j.gastro.2019.11.294.

    Article  PubMed  Google Scholar 

  37. Li KY, Wang JL, Wei JP, et al. Fecal microbiota in pouchitis and ulcerative colitis. World J Gastroenterol. 2016;22(40):8929–39. https://doi.org/10.3748/wjg.v22.i40.8929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://doi.org/10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  39. Chia JH, Feng Y, Su LH, et al. Clostridium innocuum is a significant vancomycin-resistant pathogen for extraintestinal clostridial infection. Clin Microbiol Infect. 2017;23(8):560–6. https://doi.org/10.1016/j.cmi.2017.02.025.

    Article  PubMed  Google Scholar 

  40. Feng Q, Liu Z, Zhong S, et al. Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Sci Rep. 2016;6:22525. https://doi.org/10.1038/srep22525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferrero MA, Martínez-Blanco H, Lopez-Velasco FF, et al. Purification and characterization of GlcNAc-6-P 2-epimerase from Escherichia coli K92. Acta Biochim Pol. 2007;54(2):387–99.

    Article  CAS  PubMed  Google Scholar 

  42. Martin G, Kolida S, Marchesi JR, et al. In vitro modeling of bile acid processing by the human fecal microbiota. Front Microbiol. 2018;9:1153. https://doi.org/10.3389/fmicb.2018.01153.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee JH, Regmi SC, Kim JA, et al. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect Immun. 2011;79(12):4819–4127. https://doi.org/10.1128/IAI.05580-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Niu GC, Liu L, Zheng L, et al. Mesenchymal stem cell transplantation improves chronic colitis-associated complications through inhibiting the activity of toll-like receptor-4 in mice. BMC Gastroenterol. 2018;18(1):127. https://doi.org/10.1186/s12876-018-0850-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yokoyama T, Komori A, Nakamura M, et al. Human intrahepatic biliary epithelial cells function in innate immunity by producing IL-6 and IL-8 via the TLR4-NF-kappaB and -MAPK signaling pathways. Liver Int. 2006;26(4):467–76. https://doi.org/10.1111/j.1478-3231.2006.01254.x.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Yu W, Han D, et al. L-lysine ameliorates sepsis-induced acute lung injury in a lipopolysaccharide-induced mouse model. Biomed Pharmacother. 2019;118: 109307. https://doi.org/10.1016/j.biopha.2019.109307.

    Article  CAS  PubMed  Google Scholar 

  47. Jiao N, Baker SS, Nugent CA, et al. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis. Physiol Genomics. 2018;50(4):244–54. https://doi.org/10.1152/physiolgenomics.00114.2017.

    Article  CAS  PubMed  Google Scholar 

  48. Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5. https://doi.org/10.1038/nature12726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cani PD. Is colonic propionate delivery a novel solution to improve metabolism and inflammation in overweight or obese subjects? Gut. 2019;68(8):1352–3. https://doi.org/10.1136/gutjnl-2019-318776.

    Article  PubMed  Google Scholar 

  50. Ciocan D, Voican CS, Wrzosek L, et al. Bile acid homeostasis and intestinal dysbiosis in alcoholic hepatitis. Aliment Pharmacol Ther. 2018;48(9):961–74. https://doi.org/10.1111/apt.14949.

    Article  CAS  PubMed  Google Scholar 

  51. Wirthgen E, Hoeflich A, Rebl A, et al. Kynurenic Acid: the Janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions. Front Immunol. 2018;8:1957. https://doi.org/10.3389/fimmu.2017.01957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marciniak S, Wnorowski A, Smolińska K, et al. Kynurenic Acid protects against thioacetamide-induced liver injury in rats. Anal Cell Pathol (Amst). 2018;2018:1270483. https://doi.org/10.1155/2018/1270483.

    Article  CAS  Google Scholar 

  53. Moroni F, Cozzi A, Sili M, et al. Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm (Vienna). 2012;119(2):133–9. https://doi.org/10.1007/s00702-011-0763-x.

    Article  CAS  Google Scholar 

  54. Gaffen SL, Jain R, Garg AV, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585–600. https://doi.org/10.1038/nri3707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raichur S, Brunner B, Bielohuby M, et al. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol Metab. 2019;21:36–50. https://doi.org/10.1016/j.molmet.2018.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Albeituni S, Stiban J. Roles of ceramides and other sphingolipids in immune cell function and inflammation. Adv Exp Med Biol. 2019;1161:169–91. https://doi.org/10.1007/978-3-030-21735-8_15.

    Article  CAS  PubMed  Google Scholar 

  57. Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018;68(2):280–95. https://doi.org/10.1016/j.jhep.2017.11.014.

    Article  CAS  PubMed  Google Scholar 

  58. Chaurasia B, Tippetts TS, Mayoral Monibas R, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science. 2019;365(6451):386–92. https://doi.org/10.1126/science.aav3722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81670544, 81870416), the Top-Level Clinical Discipline Project of Shanghai Pudong (PWYgf2018-04), the Science and Technology Guidance Plan of Shanghai Science and Technology Commission (19411970500) and the Pilot Talent Plan of Shanghai East Hospital (2019lhrcjh).

Author information

Authors and Affiliations

Authors

Contributions

Designed the experiments: XZ, and YL. Collected the clinical samples: KGT, KMW, and PMS. Performed the microbiome analysis: ZYH, YYL, and YTL. Performed the metabolomic analysis: BBL, and PQW. Draft the manuscript: ZYH, and YL. Revised the manuscript for intellectual content: ZYH, KGT, PQW, XZ and YL.

Corresponding authors

Correspondence to Xin Zeng or Yong Lin.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed by Zhiyuan Hao, Kegong Tao, Kaiming Wu, Yuanyuan Luo, Yiting Lu, Binbin Li, Peimei Shi, Peiqin Wang, Xin Zeng, Yong Lin.

Ethics approval

The study was approved by the Institutional Ethics Committee of Shanghai Changzheng Hospital. Informed consent was obtained prior to data collection.

Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication

Not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 787 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Tao, K., Wu, K. et al. Alterations of gut microbiome and metabolite profiles in choledocholithiasis concurrent with cholangitis. Hepatol Int 16, 447–462 (2022). https://doi.org/10.1007/s12072-021-10231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-021-10231-5

Keywords

Navigation