Skip to main content

Advertisement

Log in

Effect of Pressure on Mechanical and Thermal Properties of SnSe2

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Density functional theory based computations are used to investigate the pressure effect (0–20 GPa) on mechanical and thermal properties of SnSe2. It is noted that SnSe2 obeys mechanical stability criteria in the pressure range of 0–20 GPa. The elastic constant dependence on pressure is greater in out of plane direction as compared to in plane direction. At 20 GPa the out of plane elastic constant increases by 1.86 times as compared to the in plane elastic constants which increase by 55 %. An analysis of values of Poisson’s ratio and ratio of bulk modulus to shear modulus (B/G) indicates that SnSe2 is brittle and the brittleness decreases with increase in pressure. The hardness increases by 1.33 times at 20 GPa and the Debye temperature is enhanced by 1.24 times as compared to corresponding values of these parameters at 0 GPa. The minimum lattice thermal conductivity exhibits a slight increase with pressure. The material is more isotropic at higher pressure which is revealed from the computed anisotropic factor. Free energy of SnSe2 increasers with pressure increase. Heat capacity of SnSe2 first increases with pressure increase and then decreases with further increase in pressure. Entropy of SnSe2 decreases with pressure increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li et al., Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 27, 8035–8041 (2015)

    Article  Google Scholar 

  2. Z. Fang, S. Hao, L. Long, H. Fang, T. Qiang, Y. Song, The enhanced photoelectrochemical response of SnSe2 nanosheets. CrystEngComm 16, 2404–2410 (2014)

    Article  Google Scholar 

  3. Y. Ma, Ultrathin SnSe 2 flakes: a new member in twodimensional materials for high-performance photodetector. Science Bulletin 20, 1789–1790 (2015)

    Article  ADS  Google Scholar 

  4. Y. Su, M.A. Ebrish, E.J. Olson, S.J. Koester, SnSe2 field-effect transistors with high drive current. Appl. Phys. Lett. 103, 263104 (2013)

    Article  ADS  Google Scholar 

  5. C. Ling, Y. Huang, H. Liu, S. Wang, Z. Fang, L. Ning, Mechanical properties, electronic structures, and potential applications in lithium ion batteries: a first-principles study toward SnSe2 nanotubes. J. Phys. Chem. C 118, 28291–28298 (2014)

    Article  Google Scholar 

  6. D. Chen, W. Chen, L. Ma, G. Ji, K. Chang, J.Y. Lee, Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion. Mater. Today 17, 184–193 (2014)

    Article  Google Scholar 

  7. F. Zhang, C. Xia, J. Zhu, B. Ahmed, H. Liang, D.B. Velusamy et al., SnSe2 2D anodes for advanced sodium ion batteries. Adv. Energy Mater. 6, 1601188 (2016)

    Article  Google Scholar 

  8. M.O. Li, R. Yan, D. Jena, and H.G. Xing, Two-dimensional heterojunction interlayer tunnel FET (Thin-TFET): From theory to applications, in 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp. 19.2.1–19.2.4.

  9. B.-Z. Sun, Z. Ma, C. He, K. Wu, Anisotropic thermoelectric properties of layered compounds in SnX 2 (X= S, Se): a promising thermoelectric material. Phys. Chem. Chem. Phys. 17, 29844–29853 (2015)

    Article  Google Scholar 

  10. H. Wang, Y. Gao, G. Liu, Anisotropic phonon transport and lattice thermal conductivities in tin dichalcogenides SnS2 and SnSe2. RSC Adv. 7, 8098–8105 (2017)

    Article  ADS  Google Scholar 

  11. G. Li, G. Ding, G. Gao, Thermoelectric properties of SnSe2 monolayer. J. Phys. 29, 015001 (2016)

    Google Scholar 

  12. Y. Ding, B. Xiao, G. Tang, J. Hong, Transport properties and high thermopower of SnSe2: a full ab-initio investigation. J. Phys. Chem. C 121, 225–236 (2016)

    Article  Google Scholar 

  13. F. Li, Z. Zheng, Y. Li, W. Wang, J.-F. Li, B. Li et al., Ag-doped SnSe2 as a promising mid-temperature thermoelectric material. J. Mater. Sci. 52, 10506–10516 (2017)

    Article  ADS  Google Scholar 

  14. D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995)

    Google Scholar 

  15. P.V. Arribi, P. García-Fernández, J. Junquera, V. Pardo, Efficient thermoelectric materials using nonmagnetic double perovskites with d 0/d 6 band filling. Phys. Rev. B 94, 035124 (2016)

    Article  ADS  Google Scholar 

  16. P. Jund, R. Viennois, X. Tao, K. Niedziolka, J.-C. Tédenac, Physical properties of thermoelectric zinc antimonide using first-principles calculations. Phys. Rev. B 85, 224105 (2012)

    Article  ADS  Google Scholar 

  17. H. Wang, Z.M. Gibbs, Y. Takagiwa, G.J. Snyder, Tuning bands of PbSe for better thermoelectric efficiency. Energy Environ. Sci. 7, 804–811 (2014)

    Article  Google Scholar 

  18. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011)

    Article  ADS  Google Scholar 

  19. C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day, G.J. Snyder, Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J. Mater. Chem. A 2, 11171–11176 (2014)

    Article  Google Scholar 

  20. M. Cagnoni, D. Führen, M. Wuttig, Thermoelectric performance of IV–VI compounds with octahedral-like coordination: a chemical-bonding perspective. Adv. Mater. 30, 1801787 (2018)

    Article  Google Scholar 

  21. A. Bafekry, M. Shahrokhi, A. Shafique, H.R. Jappor, M.M. Fadlallah, C. Stampfl et al., Semiconducting chalcogenide alloys based on the (Ge, Sn, Pb)(S, Se, Te) formula with outstanding properties: a first-principles calculation study. ACS Omega 6, 9433–9441 (2021)

    Article  Google Scholar 

  22. Y. Gelbstein, G. Gotesman, Y. Lishzinker, Z. Dashevsky, M. Dariel, Mechanical properties of PbTe-based thermoelectric semiconductors. Scripta Mater. 58, 251–254 (2008)

    Article  Google Scholar 

  23. G.M. Guttmann and Y. Gelbstein, Mechanical properties of thermoelectric materials for practical applications, in Bringing Thermoelectricity into Reality, IntechOpen, 2018.

  24. X. Tao, J. Yang, L. Xi, Y. Ouyang, First-principles investigation of the thermo-physical properties of Ca3Si4. J. Solid State Chem. 194, 179–187 (2012)

    Article  ADS  Google Scholar 

  25. A. Bafekry, C. Stampfl, M. Faraji, M. Yagmurcukardes, M. Fadlallah, H. Jappor et al., A Dirac-semimetal two-dimensional BeN4: thickness-dependent electronic and optical properties. Appl. Phys. Lett. 118, 203103 (2021)

    Article  ADS  Google Scholar 

  26. A. Bafekry, M. Faraji, D. Hoat, M. Shahrokhi, M. Fadlallah, F. Shojaei et al., MoSi2N4 single-layer: a novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties. J. Phys. D 54, 155303 (2021)

    Article  ADS  Google Scholar 

  27. A. Bafekry, M. Faraji, M.M. Fadlallah, A.B. Khatibani, A. Abdolahzadeh Ziabari, M. Ghergherehchi et al., Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping. Appl. Surf. Sci. 559, 149862 (2021)

    Article  Google Scholar 

  28. A. Bafekry, C. Stampfl, M. Naseri, M.M. Fadlallah, M. Faraji, M. Ghergherehchi et al., Effect of electric field and vertical strain on the electro-optical properties of the MoSi2N4 bilayer: a first-principles calculation. J. Appl. Phys. 129, 155103 (2021)

    Article  Google Scholar 

  29. A. Bafekry, I. Abdolhosseini-Sarsari, M. Faraji, M. Fadlallah, H. Jappor, S. Karbasizadeh et al., Electronic and magnetic properties of two-dimensional of FeX (X = S, Se, Te) monolayers crystallize in the orthorhombic structures. Appl. Phys. Lett. 118, 143102 (2021)

    Article  ADS  Google Scholar 

  30. A. Bafekry, B. Mortazavi, M. Faraji, M. Shahrokhi, A. Shafique, H. Jappor et al., Ab initio prediction of semiconductivity in a novel two-dimensional Sb2X3 (X= S, Se, Te) monolayers with orthorhombic structure. Sci. Rep. 11, 1–10 (2021)

    Article  Google Scholar 

  31. J.M. Gonzalez, I.I. Oleynik, Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B 94, 125443 (2016)

    Article  ADS  Google Scholar 

  32. X. Liu, Z. Li, L. Min, Y. Peng, X. Xiong, Y. Lu et al., Effect of stress layer on thermal properties of SnSe2 few layers. J. Alloy. Compd. 783, 226–231 (2019)

    Article  Google Scholar 

  33. Z. Wu, L. Deng, M. Gooch, S. Huyan, C. Chu, The retention at ambient of the high-pressure-induced metastable superconducting phases in antimony single crystals. Mater. Today Phys. 15, 100291 (2020)

    Article  Google Scholar 

  34. L.-C. Chen, H. Yu, H.-J. Pang, B.-B. Jiang, L. Su, X. Shi et al., Pressure-induced enhancement of thermoelectric performance in palladium sulfide. Mater. Today Phys. 5, 64–71 (2018)

    Article  Google Scholar 

  35. X. He, H. Shen, Ab initio calculations of band structure and thermophysical properties for SnS2 and SnSe2. Phys. B 407, 1146–1152 (2012)

    Article  ADS  Google Scholar 

  36. Y. Javed, M. Rafiq, N. Ahmed, Pressure-induced changes in the electronic structure and enhancement of the thermoelectric performance of SnS2: a first principles study. RSC Adv. 7, 38834–38843 (2017)

    Article  ADS  Google Scholar 

  37. M. Powell, W. Liang, D. Chadi, Pressure dependence of the band structure of 2H-SnS2. J. Phys. C Solid State Phys. 11, 885 (1978)

    Article  ADS  Google Scholar 

  38. M. Powell, The effect of pressure on the optical properties of 2H and 4H SnS2. J. Phys. C Solid State Phys. 10, 2967 (1977)

    Article  ADS  Google Scholar 

  39. S.V. Bhatt, M. Deshpande, V. Sathe, R. Rao, S. Chaki, Raman spectroscopic investigations on transition-metal dichalcogenides MX2 (M= Mo, W; X= S, Se) at high pressures and low temperature. J. Raman Spectrosc. 45, 971–979 (2014)

    Article  ADS  Google Scholar 

  40. X. Su, R. Zhang, C. Guo, J. Zheng, Z. Ren, Band engineering of dichalcogenide MX2 nanosheets (M= Mo, W and X= S, Se) by out-of-plane pressure. Phys. Lett. A 378, 745–749 (2014)

    Article  ADS  Google Scholar 

  41. X. Fan, C.-H. Chang, W. Zheng, J.-L. Kuo, D.J. Singh, The electronic properties of single-layer and multilayer MoS2 under high pressure. J. Phys. Chem. C 119, 10189–10196 (2015)

    Article  Google Scholar 

  42. L.-P. Feng, N. Li, M.-H. Yang, Z.-T. Liu, Effect of pressure on elastic, mechanical and electronic properties of WSe2: a first-principles study. Mater. Res. Bull. 50, 503–508 (2014)

    Article  Google Scholar 

  43. Y. Javed, S.M. Mirza, C. Li, X. Xu, M.A. Rafiq, The role of biaxial strain and pressure on the thermoelectric performance of SnSe2: a first principles study. Semicond. Sci. Technol. 34, 13 (2019)

    Article  Google Scholar 

  44. M. Powell, A. Grant, The effect of pressure on the optical-absorption edge in SnS2 and SnSe2. Il Nuovo Cimento B 1971–1996, 486–495 (1977)

    Article  ADS  Google Scholar 

  45. Y.Ö. Çiftci, K. Çolakoğlu, E. Deligöz, Ü. Bayhan, First-principles calculations on structure, elastic and thermodynamic properties of Al2X (X= Sc, Y) under pressure. J. Mater. Sci. Technol. 28, 155–163 (2012)

    Article  Google Scholar 

  46. G. Steinle-Neumann, L. Stixrude, R.E. Cohen, First-principles elastic constants for the hcp transition metals Fe Co, and Re at high pressure. Phys. Rev. B 60, 791 (1999)

    Article  ADS  Google Scholar 

  47. R. Singh, S. Singh, Structural phase transition and high-pressure elastic behavior of III–V semiconductors. Phys. Rev. B 39, 671 (1989)

    Article  ADS  Google Scholar 

  48. R. Singh, S. Singh, High pressure phase transitions and variation of elastic constants of some II–VI semiconductors. Phase Transit. A Multinatl. J. 15, 127–134 (1989)

    Article  Google Scholar 

  49. R. Khenata, A. Bouhemadou, M. Sahnoun, A.H. Reshak, H. Baltache, M. Rabah, Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Comput. Mater. Sci. 38, 29–38 (2006)

    Article  Google Scholar 

  50. H. Peelaers, C. Van de Walle, Elastic constants and pressure-induced effects in MoS2. J. Phys. Chem. C 118, 12073–12076 (2014)

    Article  Google Scholar 

  51. L. Wei, C. Jun-fang, H. Qinyu, W. Teng, Electronic and elastic properties of MoS2. Phys. B 405, 2498–2502 (2010)

    Article  ADS  Google Scholar 

  52. T. Ma, P. Chakraborty, X. Guo, L. Cao, Y. Wang, First-principles modeling of thermal transport in materials: achievements, opportunities, and challenges. Int. J. Thermophys. 41, 1–37 (2020)

    Article  Google Scholar 

  53. Z. Almaghbash, O. Arbouche, A. Cherifi, S. Kessair, A. Zenati, Y. Azzaz, Enhanced thermoelectric performances driven by high-pressure phase transition of Mg2Sn compound. Int. J. Thermophys. 41, 1–14 (2020)

    Article  Google Scholar 

  54. Z. Almaghbash, O. Arbouche, A. Dahani, A. Cherifi, M. Belabbas, A. Zenati et al., Thermoelectric and piezoelectric properties in half-heusler compounds TaXSn (X= Co, Rh and Ir) based on ab initio calculations. Int. J. Thermophys. 42, 1–19 (2021)

    Article  Google Scholar 

  55. R. Miloua, Z. Kebbab, N. Benramdane, M. Khadraoui, F. Chiker, Ab initio prediction of elastic and thermal properties of cubic TiO2. Comput. Mater. Sci. 50, 2142–2147 (2011)

    Article  Google Scholar 

  56. K. Zhao, G. Jiang, L. Wang, Electronic and thermodynamic properties of B2-FeSi from first principles. Phys. B 406, 363–367 (2011)

    Article  ADS  Google Scholar 

  57. F. Peng, Q. Liu, H. Fu, X. Yang, Electronic and thermodynamic properties of ReB2 under high pressure and temperature. Solid State Commun. 149, 56–59 (2009)

    Article  ADS  Google Scholar 

  58. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  59. G. Kresse, G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  60. G. Kresse, G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  61. J. Perdew, JP Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  62. Y. Le Page, P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 65, 104104 (2002)

    Article  ADS  Google Scholar 

  63. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scripta Mater. 108, 1–5 (2015)

    Article  ADS  Google Scholar 

  64. E. Trifonova, I. Yanchev, P. Manou, K. Kambas, A. Anagnostopoulos, Growth and characterization of SnSe2. J. Mater. Sci. 31, 3647–3649 (1996)

    Article  ADS  Google Scholar 

  65. Y. Wu, W. Li, A. Faghaninia, Z. Chen, J. Li, X. Zhang et al., Promising thermoelectric performance in van der Waals layered SnSe2. Mater. Today Phys. 3, 127–136 (2017)

    Article  Google Scholar 

  66. C. Xia, J. An, S. Wei, Y. Jia, Q. Zhang, Electronic structures and optical properties of SnSe2 (1–x) O2 x alloys. Comput. Mater. Sci. 95, 712–717 (2014)

    Article  Google Scholar 

  67. V. Hadjiev, D. De, H. Peng, J. Manongdo, A. Guloy, Phonon probe of local strains in SnS x Se 2–x mixed crystals. Phys. Rev. B 87, 104302 (2013)

    Article  ADS  Google Scholar 

  68. G. Sin-Ko, N. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. J. Phys. 14, 6989 (2002)

    Google Scholar 

  69. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65, 349 (1952)

    Article  ADS  Google Scholar 

  70. P. Mao, B. Yu, Z. Liu, F. Wang, Y. Ju, First-principles investigation on mechanical, electronic, and thermodynamic properties of Mg2Sr under high pressure. J. Appl. Phys. 117, 115903 (2015)

    Article  ADS  Google Scholar 

  71. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928), Google Scholar, 962, 1908.

  72. J. Wang, J. Wang, Y. Zhou, C. Hu, Phase stability, electronic structure and mechanical properties of ternary-layered carbide Nb4AlC3: An ab initio study. Acta Mater. 56, 1511–1518 (2008)

    Article  ADS  Google Scholar 

  73. S. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philosoph. Mag. J. Sci. 45, 823–843 (1954)

    Google Scholar 

  74. A. El-Adawy, N. El-KheshKhany, Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Commun. 139, 108–113 (2006)

    Article  ADS  Google Scholar 

  75. I. Frantsevich, Elastic constants and elastic moduli of metals and insulators, Reference book, 1982.

  76. M.E. Eberhart, T.E. Jones, Cauchy pressure and the generalized bonding model for nonmagnetic bcc transition metals. Phys. Rev. B 86, 134106 (2012)

    Article  ADS  Google Scholar 

  77. X. Zeng, R. Peng, Y. Yu, Z. Hu, Y. Wen, L. Song, Pressure effect on elastic constants and related properties of Ti3Al intermetallic compound: a first-principles study. Materials 11, 2015 (2018)

    Article  ADS  Google Scholar 

  78. S.I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008)

    Article  ADS  Google Scholar 

  79. C.M. Kube, Elastic anisotropy of crystals. AIP Adv. 6, 095209 (2016)

    Article  ADS  Google Scholar 

  80. K. Brugger, Determination of third-order elastic coefficients in crystals. J. Appl. Phys. 36, 768–773 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  81. Y. Duan, Y. Sun, M. Peng, S. Zhou, Anisotropic elastic properties of the Ca–Pb compounds. J. Alloy. Compd. 595, 14–21 (2014)

    Article  Google Scholar 

  82. O. Anderson, E. Schreiber, N. Soga, Elastic Constants and Their Measurements (McGraw-Hill, New York, 1973)

    Google Scholar 

  83. D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163, 67–74 (2003)

    Article  Google Scholar 

  84. B. Liu, J. Wang, F. Li, Y. Zhou, Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 58, 4369–4377 (2010)

    Article  ADS  Google Scholar 

  85. C.-X. Li, Y.-H. Duan, W.-C. Hu, Electronic structure, elastic anisotropy, thermal conductivity and optical properties of calcium apatite Ca5 (PO4) 3X (X = F, Cl or Br). J. Alloy. Compd. 619, 66–77 (2015)

    Article  Google Scholar 

  86. O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963)

    Article  ADS  Google Scholar 

  87. J. Garai, Physics behind the Debye temperature, arXiv.physics/0703001, 2007.

  88. Y. Aierken, D. Çakır, C. Sevik, F.M. Peeters, Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Phys. Rev. B 92, 081408 (2015)

    Article  ADS  Google Scholar 

  89. G. Adesakin, Vibrational internal energy and helmholtz free energy of metals. Turk. J. Comput. Math. Educ. (TURCOMAT) 12, 7638–7648 (2021)

    Google Scholar 

  90. C. Kittel, P. McEuen, Introduction to Solid State Physics, vol. 8 (Wiley, New York, 1996)

    Google Scholar 

  91. W. Naffouti, T.B. Nasr, H. Meradji, N. Kamoun-Turki, First-principles investigation of structural, thermal and transport properties of anatase TiO2. J. Electron. Mater. 45, 5096–5103 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rafiq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, Y., Mirza, S.M. & Rafiq, M.A. Effect of Pressure on Mechanical and Thermal Properties of SnSe2. Int J Thermophys 42, 146 (2021). https://doi.org/10.1007/s10765-021-02894-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02894-x

Keywords

Navigation