Skip to main content
Log in

Thermal Diffusivity Measurement of a NiTi Shape Memory Alloy Using a Periodic Temperature Field

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The aim of this study is to estimate the thermal diffusivity of martensitic and austenitic microstructures of a NiTi SMA. To this end, an experimental apparatus supported on the Angstrom’s method was designed, where one face of a cylindrical sample is subjected to a periodic heat flux and the other face is kept at a constant temperature. This apparatus was developed to provide the three fundamental requirements of the applied method: (1) uniformity of the thermal field in any cross section of the medium; (2) complete damping of the heat wave before it reaches the face at a prescribed temperature; (3) thermophysical properties independent of temperature within the adopted measurement range. Fourteen thermocouples are fixed at specific locations on the side of the sample, for measuring the amplitude and phase-lag of the thermal wave supplied from periodic heating at a certain frequency. The measurements of these parameters, carried out on a permanent periodic regime, are replaced into a mathematical model, in order that the thermal diffusivity can be determined by linear regression. The results obtained for the two microstructures showed good agreement with the literature, with absolute deviations below 8.5 %, proving the effectiveness of the experimental arrangement. The estimated thermal diffusivity of austenite is 48.21 % higher than that of martensite. The uncertainty quantification, assessed by the Monte Carlo Method, indicates a low dispersion, below 1.5 %, which delivers high precision and reliability to the estimated thermophysical property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SMA:

Shape Memory Alloy

SMM:

Shape Memory Material

DSC:

Differential Scanning Calorimetry

AWG:

American Wire Gauge

JCGM:

Joint Committee for Guides in Metrology

MCM:

Monte Carlo Method

LPU:

Law of Propagation of Uncertainties method

PDF:

Probability Density Function

PPR:

Periodic Permanent Regime

\(\alpha\) :

Thermal diffusivity (m2·s1)

\(k\) :

Thermal conductivity (W·m1·K1)

\(\rho\) :

Density (kg·m3)

\({c}_{p}\) :

Specific heat (J·kg1·K1)

\({\alpha }_{M}\) :

Thermal diffusivity of martensite (m2·s1)

\({\alpha }_{A}\) :

Thermal diffusivity of austenite (m2·s1)

\({A}_{S}\) :

Start temperature of austenitic transformation·(°C)

\({A}_{F}\) :

Finish temperature of austenitic transformation·(°C)

\({M}_{S}\) :

Start temperature of martensitic transformation·(°C)

\({M}_{F}\) :

Finish temperature of martensitic transformation·(°C)

\(H\) :

Latent heat (J·kg1)

\({k}_{A}\) :

Thermal conductivity of austenite (W·m1·K1)

\({k}_{M}\) :

Thermal conductivity of martensite (W·m1·K1)

\(u\) :

Speed of the boundary phase change (m·s1)

\(\xi\) :

State of M-A transformation

\(L\) :

Sample length (m)

\(x\) :

Spatial coordinate (m)

Ra :

Surface roughness (μm)

\(T\) :

Temperature (°C)

\(t\) :

Time (s)

\(A\) :

Amplitude ratio

\(A\left(x\right)\) :

Amplitude of the thermal wave at x position (°C)

\(A\left(L\right)\) :

Amplitude of the thermal wave at (x/L) = (°C)

\(\omega\) :

Angular velocity (rad·s1)

\(\phi\) :

Phase-lag (rad)

\(\varepsilon\) :

Reference phase angle (rad)

\(f\) :

Thermal wave frequency (Hz)

\(\delta\) :

Relative difference between measurement temperatures (%)

\(U\) :

Measurement uncertainty (%)

\(N\) :

Number of iterations of the Monte Carlo Method

References

  1. J.M. Jani, M. Leary, A. Subic, M.A. Gibson, Mater. Des. (2014). https://doi.org/10.1016/j.matdes.2013.11.084

    Article  Google Scholar 

  2. E. Kaya, I. Kaya, Int. J. Adv. Manuf. Technol. (2019). https://doi.org/10.1007/s00170-018-2818-8

    Article  Google Scholar 

  3. C. Cismasiu, F.P.A. Dos Santos, Smart Mater. Struct. (2008). https://doi.org/10.1088/0964-1726/17/2/025036

    Article  Google Scholar 

  4. A.G. Oliveira, A.A. Silva, C.J. De Araújo, R. Senko, R.P.B. Dos Reis, J. Intell. Mater. Syst. Struct. (2020). https://doi.org/10.1177/1045389X20924829

    Article  Google Scholar 

  5. L.R.R. da Silva, W.F. Sales, F.A.R. Campos, J.A.G. de Sousa, R. Davis, A. Singh, R.T. Coelho, B. Borgohain, Prog. Addit. Manuf. (2021). https://doi.org/10.1007/s40964-021-00188-0

    Article  Google Scholar 

  6. G. Florian, A.R. Gabor, C.A. Nicolae, A. Rotaru, N. Stanica, N.G. Bizdoaca, P. Rotaru, J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-019-08869-3

    Article  Google Scholar 

  7. P.F. Zou, H.P. Wang, S.J. Yang, L. Hu, B. Wei, Chem. Phys. Lett. (2017). https://doi.org/10.1016/j.cplett.2017.05.059

    Article  Google Scholar 

  8. O. Benafan, W.U. Notardonato, B.J. Meneghelli, R. Vaidyanathan, Smart Mater. Struct. (2013). https://doi.org/10.1088/0964-1726/22/10/105017

    Article  Google Scholar 

  9. M. Kadkhodaei, R.K.N.D. Rajapakse, M. Mahzoon, M. Salimi, Smart Mater. Struct. (2007). https://doi.org/10.1088/0964-1726/16/6/012

    Article  Google Scholar 

  10. P. Shayanfard, M. Kadkhodaei, A. Jalalpour, Iran J. Sci. Technol. Trans. Mech. Eng. (2018). https://doi.org/10.1007/s40997-018-0183-8

    Article  Google Scholar 

  11. M. Kaya, A. Bugutekin, N. Orhan, Int. J. Thermophys. (2011). https://doi.org/10.1007/s10765-011-0919-9

    Article  Google Scholar 

  12. M.E. Reyes-Melo, F.Y. Rentería-Baltiérrez, B. López-Walle, E. López-Cuellar, C.J. De Araujo, J. Therm. Anal. Calorim. (2016). https://doi.org/10.1007/s10973-016-5552-1

    Article  Google Scholar 

  13. C. Zanotti, P. Giuliani, G. Riva, A. Tuissi, A. Chrysanthou, J. Alloys Compd. (2009). https://doi.org/10.1016/j.jallcom.2008.05.040

    Article  Google Scholar 

  14. C. Zanotti, P. Giuliani, A. Chrysanthou, Intermetallics (2012). https://doi.org/10.1016/j.intermet.2012.01.026

    Article  Google Scholar 

  15. A. Rudajevova, J. Sroub, V. Lang, Int. J. Thermophys. (2009). https://doi.org/10.1007/s10765-009-0576-4

    Article  Google Scholar 

  16. J.R. Ferreira-Oliveira, L.R.R. De Lucena, R.P.B. Dos Reis, C.J. De Araújo, C.R. Bezerra-Filho, Exp. Heat Transf. (2021). https://doi.org/10.1080/08916152.2021.1887407

    Article  Google Scholar 

  17. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, J. Appl. Phys. (1961). https://doi.org/10.1063/1.1728417

    Article  Google Scholar 

  18. M.K. Alam, B. Maruyama, Exp. Heat Transf. (2004). https://doi.org/10.1080/08916150490449055

    Article  Google Scholar 

  19. M. Li, M. Akoshima, Int. J. Heat Mass Transf. (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.119017

    Article  Google Scholar 

  20. Y. Chihab, M. Garoum, N. Laaroussi, Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-02704-w

    Article  Google Scholar 

  21. C.H. Kim, E.B. Go, H.T. Kim, Heat Transf. Eng. (2020). https://doi.org/10.1080/01457632.2019.1628484

    Article  Google Scholar 

  22. M.J. Assael, K.D. Antoniadis, I.N. Metaxa, S.K. Mylona, J.A.M. Assael, J. Wu, M. Hu, Int. J. Thermophys. (2015). https://doi.org/10.1007/s10765-015-1964-6

    Article  Google Scholar 

  23. Y. Jannot, A. Degiovanni, Int. J. Therm. Sci. (2019). https://doi.org/10.1016/j.ijthermalsci.2019.04.026

    Article  Google Scholar 

  24. P.G. Bison, E. Grinzato, S. Marinetti, Quant. Infrared Thermogr. J. (2004). https://doi.org/10.3166/qirt.1.241-250

    Article  Google Scholar 

  25. D.C. Knupp, C.P. Naveira-Cotta, H.R.B. Orlande, R.M. Cotta, Exp. Heat Transf. (2013). https://doi.org/10.1080/08916152.2011.631079

    Article  Google Scholar 

  26. H.M. Fonseca, H.R.B. Orlande, O. Fudym, F. Sepúlveda, Quant. Infrared Thermogr. J. (2014). https://doi.org/10.1080/17686733.2014.947860

    Article  Google Scholar 

  27. P.W. Nolte, T. Malvisalo, F. Wagner, S. Schweizer, Quant. Infrared Thermogr. J. (2017). https://doi.org/10.1080/17686733.2017.1329777

    Article  Google Scholar 

  28. G. Guimarães, P.C. Philippi, P. Thery, Rev. Sci. Instrum. (1995). https://doi.org/10.1063/1.1145592

    Article  Google Scholar 

  29. S.M.M. Lima e Silva, M.A.V. Duarte, G. Guimarães, Rev. Sci. Instrum. (1998). https://doi.org/10.1063/1.1149094

    Article  Google Scholar 

  30. V.L. Borges, S.M.M. Lima e Silva, G. Guimarães, Inverse Probl. Sci. Eng. (2006). https://doi.org/10.1080/17415970600573700

    Article  Google Scholar 

  31. P.F.B. Sousa, S.R. Carvalho, G. Guimarães, Inverse Probl. Sci. Eng. (2008). https://doi.org/10.1080/17415970802082765

    Article  Google Scholar 

  32. V.L. Borges, P.F.B. Sousa, G. Guimarães, Inverse Probl. Sci. Eng. (2008). https://doi.org/10.1080/17415970802166659

    Article  Google Scholar 

  33. F.C. Malheiros, J.G. Nascimento, A.P. Fernandes, G. Guimarães, Rev. Sci. Instrum. (2020). https://doi.org/10.1063/1.5122756

    Article  Google Scholar 

  34. L.F.S. Carollo, A.L.F. Lima e Silva, S.M.M. Lima e Silva, Meas. Sci. Technol. (2012). https://doi.org/10.1088/0957-0233/23/6/065601

    Article  Google Scholar 

  35. A.P. Fernandes, M.B. Santos, G. Guimarães, Appl. Math. Model. (2015). https://doi.org/10.1016/j.apm.2015.02.012

    Article  Google Scholar 

  36. A. Jain, K.E. Goodson, J. Heat Transf. (2008). https://doi.org/10.1115/1.2945904

    Article  Google Scholar 

  37. T. Ding, Y. Jannot, A. Degiovanni, Int. J. Therm. Sci. (2014). https://doi.org/10.1016/j.ijthermalsci.2014.06.010

    Article  Google Scholar 

  38. K. Mishra, B. Garnier, S. Le Corre, N. Boyard, J. Thermal Anal. Calorim. (2020). https://doi.org/10.1007/s10973-019-08568-z

    Article  Google Scholar 

  39. Y. Zhu, Int. J. Heat Mass Transf. (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.032

    Article  Google Scholar 

  40. A. Prasad, A. Ambirajan, Int. J. Therm. Sci. (2018). https://doi.org/10.1016/j.ijthermalsci.2018.08.007

    Article  Google Scholar 

  41. S. Corasaniti, M. Potenza, P. Coppa, G. Bovesecchi, Int. J. Therm. Sci. (2020). https://doi.org/10.1016/j.ijthermalsci.2019.106232

    Article  Google Scholar 

  42. A. Rudajevova, Int. J. Thermophys. (2010). https://doi.org/10.1007/s10765-010-0713-0

    Article  Google Scholar 

  43. A. Rudajevova, J. Pospísil, J. Alloys Compd. (2011). https://doi.org/10.1016/j.jallcom.2011.02.095

    Article  Google Scholar 

  44. M.G. Faulkner, J.J. Amalraj, A. Bhattacharyya, Smart Mater. Struct. (2000). https://doi.org/10.1088/0964-1726/9/5/307

    Article  Google Scholar 

  45. A. Rudajevova, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2010.01.161

    Article  Google Scholar 

  46. C. Zanotti, P. Giuliani, P. Bassani, Z. Zhang, A. Chrysanthou, Intermetallics (2010). https://doi.org/10.1016/j.intermet.2009.06.001

    Article  Google Scholar 

  47. B. Ramachandran, C.H. Chen, P.C. Chang, Y.K. Kuo, C. Chien, S.K. Wu, Intermetallics (2015). https://doi.org/10.1016/j.intermet.2015.02.004

    Article  Google Scholar 

  48. G.N. Frantziskonis, S. Gur, J. Intell. Mater. Syst. Struct. (2017). https://doi.org/10.1177/1045389X16685440

    Article  Google Scholar 

  49. K. Wei, B. Ma, X. Huang, Y. Xiao, H. Liu, Renew. Energy. (2019). https://doi.org/10.1016/j.renene.2019.04.026

    Article  Google Scholar 

  50. V. Delobelle, D. Favier, H. Louche, N. Connesson, Exp. Mech. (2015). https://doi.org/10.1007/s11340-014-9877-z

    Article  Google Scholar 

  51. J. Hahn, T. Reid, A. Marconnet, J. Heat Transf. (2019). https://doi.org/10.1115/1.4043619

    Article  Google Scholar 

  52. W.N. Santos, J.N. Santos, P. Mummery, A. Wallwork, Polym. Test. (2010). https://doi.org/10.1016/j.polymertesting.2009.09.011

    Article  Google Scholar 

  53. C.J. De Araújo, A.A.A. Gomes, J.A. Silva, A.J.T. Cavalcanti, R.P.B. Reis, C.H. Gonzalez, J. Mater. Process. Technol. (2009). https://doi.org/10.1016/j.jmatprotec.2008.08.025

    Article  Google Scholar 

  54. J.B. Simões, C.J. De Araújo, J. Intell. Mater. Syst. Struct. (2018). https://doi.org/10.1177/1045389X18799197

    Article  Google Scholar 

  55. J.B. Simões, H.M.A. Cardins, E.N.D. Grassi, C.J. De Araújo, J. Braz, Soc. Mech. Sci. Eng. (2020). https://doi.org/10.1007/s40430-020-2203-z

    Article  Google Scholar 

  56. E.O.S. Montenegro, E.N.D. Grassi, J.B. Simões, P.C.S. Da Silva, C.J. De Araújo, Smart Mater. Struct. (2020). https://doi.org/10.1088/1361-665X/abadd1

    Article  Google Scholar 

  57. A.A. Da Cruz Gomes, E.N.D. Grassi, P.C.S. Da Silva, C.J. De Araújo, Smart Mater. Struct. (2021). https://doi.org/10.1088/1361-665X/abca83

    Article  Google Scholar 

  58. ABNT NBR ISO 4288, Geometrical product specifications (GPS) – Surface texture: Profile method – Rules and procedures for the assessment of surface texture (Brazilian Technical Standards Association, ABNT, Rio de Janeiro, 2008)

  59. ABNT NBR NM-ISO 1, Standard reference temperature for industrial length measurements (Brazilian Technical Standards Association, ABNT, Rio de Janeiro, 1997)

  60. M.N. Ozisik, Heat Conduction, 2nd edn. (Wiley, New Jersey, 1993)

    Google Scholar 

  61. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford Science Publications, Oxford, 1959)

    MATH  Google Scholar 

  62. S. Kakaç, Y. Yener, C.P. Naveira-Cotta, Heat Conduction, 5th edn. (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  63. J.R. Ferreira-Oliveira, L.R.R. De Lucena, R.P.B. Dos Reis, C.J. De Araújo, C.R. Bezerra-Filho, R.V. Arencibia, Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-02724-6

    Article  Google Scholar 

  64. Y.S. Touloukian, R.W. Powell, C.Y. Ho, M.C. Nicolau, Thermophysical Properties of Materials, vol. 10 (Plenum Press, New York, 1972)

    Google Scholar 

  65. J.V. Pearce, V. Montag, D. Lowe, W. Dong, Int. J. Thermophys. (2011). https://doi.org/10.1007/s10765-010-0892-8

    Article  Google Scholar 

  66. Y.T. Iç, E.S. Güler, Z.E. Çakir, Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2516-2

    Article  Google Scholar 

  67. JCGM 101, Evaluation of Measurement Data—Supplement 1 to the guide to the expression of uncertainty in measurement—propagation of distributions using a Monte Carlo Method, 1st edn (Joint Committee for Guides in Metrology, BIPM, Paris, 2008)

  68. Y. Sun, J. Yang, Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-02726-4

    Article  Google Scholar 

  69. J.E.S. Leal, J.A. Da Silva, R.V. Arencibia, J. Braz. Soc. Mech. Sci. Eng. (2020). https://doi.org/10.1007/s40430-020-02548-3

    Article  Google Scholar 

  70. G. Bovesecchi, P. Coppa, S. Corasaniti, M. Potenza, Int. J. Thermophys. (2018). https://doi.org/10.1007/s10765-018-2402-3

    Article  Google Scholar 

  71. S. Reif-Acherman, Int. J. Heat Mass Transf. (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.038

    Article  Google Scholar 

  72. K. Otsuka, C.M. Wayman, Shape Memory Materials, 1st edn. (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian financing agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) for supporting the development of this research. The authors would like to thank Prof. Arthur Alves Fiocchi, Ph. D, and Walter Motta Neto, Ph. D student (Manufacturing Research Center, Faculty of Mechanical Engineering, Federal University of Uberlândia, MG, Brazil), for their support in surface roughness measurements.

Author information

Authors and Affiliations

Authors

Contributions

JRFO: Conceptualization, Methodology, Validation, Investigation. PCSS: Conceptualization, Methodology. Investigation. LRRL: Conceptualization, Methodology. RPBR: Conceptualization, Software. CJA: Resources, Supervision. CRBF: Formal analysis, Supervision, Project administration.

Corresponding author

Correspondence to José Ricardo Ferreira-Oliveira.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira-Oliveira, J.R., da Silva, P.C.S., de Lucena, L.R.R. et al. Thermal Diffusivity Measurement of a NiTi Shape Memory Alloy Using a Periodic Temperature Field. Int J Thermophys 42, 147 (2021). https://doi.org/10.1007/s10765-021-02900-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02900-2

Keywords

Navigation