Skip to main content
Log in

Study the Role of R2 Term in Cosmological AdS-like Space by AdS/CFT Correspondence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

It has been shown that AdS/CFT correspondence may be realized between some AdS-like cosmological space and CFT living on the boundary. By extending such works we studied the role of R2 term in the corrected action to the thermodynamic quantities, particularly by adding a boundary counterterms to the gravitational action and considering an AdS-like cosmological space. With such HD (higher derivative) terms and metric we calculated the free energy, as a function of N2T4 times 3/2(1 − 1/N2), that is comparable with perturbative result followed from boundary QFT. In fact the difference between the results obtained from AdS-like cosmological space and the results obtained from strong coupling limit of = 4 SCFT, by taking into account next to leading term in large N expansion, is just a 3/2 factor. Higher derivative term contributions also appear in entropy and energy via the redefinition of gravitation constant. We explicitly identify higher order counterterms effect in energy as a constant term namely E0. This value can be interpreted as the Casimir energy, so that, there is a full and perfect match between QFT and gravitational action when both R2 term and boundary counterterms are considered. So we can claim that our results have assured us that there is a good fit between AdS-like cosmological space and = 4 SU(N) super Yang-Mills quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Susskind, L., Witten, E.: The holographic bound in Anti-de Sitter space. arXiv:hep-th/9805114

  3. Maldacena, J.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Gubser, S. S., Klebanov, I. R., Polyakov, A. M.: Gauge theory correlators from noncritical string theory. Phys. Lett. B428, 105 (1998). arXiv:hep-th/9802109

    Article  MATH  ADS  Google Scholar 

  5. Aharony, O., Gubser, S., Maldacena, J., Ooguri, H., Oz, Y.: . arXiv:hepth/9905111

  6. Gubser, S., Klebanov, I., Peet, A.: . Phys. Rev. D54, 3915 (1996). arXiv:hep-th/9602135

    ADS  Google Scholar 

  7. Gubser, S., Klebanov, I., Tseytlin, A.: . Nucl. Phys. B534, 202 (1998). arXiv:hep-th/9805156

    Article  ADS  Google Scholar 

  8. Itzhaki, N., Maldacena, J.M., Sonnenschein, J., Yankielowicz, S.: Phys. Rev. D58 (1998) 046004, arXiv:hep-th/9802042; A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Phys.Rev. D59 (1999) 064010, arXiv:hep-th/9808177; J.L.F. Barbon, I.I. Kogan and E. Rabinovici, Nucl.Phys. B544 (1999) 104, arXiv:hep-th/9809033; A.W. Peet and S.F. Ross, JHEP 12 (1998) 020, arXiv:hep-th/9810200; Y. Kinar, E. Schreiber and J. Sonnenschein, arXiv:hep-th/9811192; R.-G. Cai and K.-S. Soh, arXiv:hep-th/9812121; JHEP 05 (1999) 025; J. Greensite and P. Olesen, JHEP 04 (1999) 001, arXiv:hep-th/9901057; J. Ellis, A. Ghosh and N.E. Mavromatos, Phys.Lett. B454 (1999) 193, arXiv:hep-th/9902190

  9. Nojiri, S., Odintsov, S.D.: arXiv:hep-th/9906216

  10. Bekenstein, J.: . Lett. Nuov. Cim. 4, 737 (1972). Phys. Rev. D7, 2333 (1973); Phys. Rev. D9, 3292 (1974)

    Article  ADS  Google Scholar 

  11. Hawking, S.W.: . Nature 248, 30 (1974). Comm. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  12. Hawking, S.W.: . Mon. Not. Roy. Astron. Soc. 152, 75 (1971). A. Salam, in Quantum Gravity: an Oxford Symposium (Eds. Isham, Penrose and Sciama, Oxford Univ. Press 1975); G. ’t Hooft, Nucl. Phys. B335 (1990) 138

    Article  ADS  Google Scholar 

  13. Susskind, L.: Stanford preprint SU-ITP-94-33 (1994), arXiv:hep-th/9309145; L. Susskind and J.R. Uglum, Phys. Rev. D50 (1994) 2700 [arXiv:hep-th/9401070]; for a review, see L. Susskind and J.R. Uglum, Stanford preprint SU-ITP-95-31 (1995), arXiv:hep-h/9511227

  14. Sen, A.: . Mod. Phys. Lett. A10, 2081 (1995). arXiv:hep-th/9504147

    Article  ADS  Google Scholar 

  15. Strominger, A., Vafa, C.: Harvard and Santa Barbara preprint HUTP-96-A002 (1996), arXiv:hep-th/9601029

  16. Breckenridge, J.C., Myers, R.C., Peet, A.W., Vafa, C.: Harvard and McGill and Princeton preprint HUTP-96/A005, McGill/96-07, PUPT-1592. arXiv:hep-th/9602065

  17. Callan, C. G., Maldacena, J.M.: Princeton preprint PUPT-1591. arXiv:hepth/9602043 (1996)

  18. Horowitz, G.T., Strominger, A.: Santa Barbara preprint. arXiv:hepth/9602051 (1996)

  19. Horowitz, G. T., Strominger, A.: . Nucl. Phys. B360, 197 (1991)

    Article  ADS  Google Scholar 

  20. Easther, R., Lowe, D. A.: Holography, cosmology and the second law of thermodynamics. arXiv:hep-th/9902088

  21. Veneziano, G.: Pre-bangian origin of our entropy and time arrow. arXiv:hep-th/9902126

  22. Bak, D., Rey, S.-J.: Cosmic holography. arXiv:hep-th/9902173

  23. Kaloper, N., Linde, A.: Cosmology vs. holography. arXiv:hep-th/9904120

  24. Brustein, R.: The generalized second law of thermodynamics in cosmology. arXiv:gr-/9904061

  25. Nojiri, S., Odintsov, S. D.: AdS/CFT correspondence in cosmology, arXiv:hep-h/0008160v3

  26. Freedman, D. Z., van Nieuwenhuizen, P.: Properties of supergravity theory. Phys. Rev. D14, 912 (1976)

    MathSciNet  ADS  Google Scholar 

  27. Freedman, D. Z., van Nieuwenhuizen, P., Ferrara, S.: Progress toward a theory of supergravity. Phys. Rev. D13, 3214 (1976)

    MathSciNet  ADS  Google Scholar 

  28. Haag, R., Lopuszanski, J. T., Sohnius, M.: All possible generators of supersymmetries of the S matrix. Nucl. Phys. B88, 257 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  29. Ferrara, S., van Nieuwenhuizen, P.: Consistent supergravity with complex spin- 3/2 gauge fields. Phys. Rev. Lett. 37, 1669 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  30. Ferrara, S., Scherk, J., Zumino, B.: Algebraic properties of extended supergravity theories. Nucl. Phys. B121, 393 (1977)

    Article  ADS  Google Scholar 

  31. Tanii, Y.: Introduction to supergravity. Springer (2014)

  32. Cadavid, A. C., Ceresole, A., D’Auria, R., Ferrara, S.: Eleven-dimensional supergravity compactified on Calabi-Yau three folds. Phys. Lett. B 357, 76 (1995). arXiv:hep-th/9506144

    Article  MathSciNet  ADS  Google Scholar 

  33. Balasubramanian, V., Larsen, F.: On D-Branes and black holes in four dimensions. Nucl. Phys. B 478, 199–208 (1996). arXiv:hep-th/9604189

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Sadeghi, J., Pourhassan, B.: Drag force of moving quark at the N = 2 supergravity. JHEP 0812, 026 (2008). arXiv:0809.2668[hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Mas, J.: Shear viscosity from R-charged AdS black holes. JHEP 0603, 016 (2006). arXiv:hep-th/0601144

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Cremonini, S., Hanaki, K., Liu, J.T., Szepietowski, P.: Higher derivative effects on \(\frac {\eta }{s}\) at finite chemical potential. Phys. Rev. D 80, 025002 (2009). arXiv:0903.3244[hep-th]

  37. Myers, R. C., Paulos, M. F., Sinha, A.: Holographic hydrodynamics with a chemical potential. JHEP 0906, 006 (2009). arXiv:0903.2834[hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  38. Sadeghi, J., Setare, M. R., Pourhassan, B.: Drag force with different charges in STU background and AdS/CFT. J. Phys. G: Nucl. Part. Phys. 36, 115005 (2009). arXiv:0905.1466[hep-th]

  39. Pourhassan, B., Sadeghi, J.: STU/QCD Correspondence. Can. J. Phys. 91(12), 995–1019 (2013). arXiv:1205.4254v5[hep-th]

    Article  ADS  Google Scholar 

  40. Sadeghi, J., Setare, M. R., Pourhassan, B., Hashmatian, S.: Drag force of moving quark in STU background. Eur. Phys. J. C 61, 527 (2009). arXiv:0901.0217[hep-th]

    Article  ADS  Google Scholar 

  41. Jain, S.: Universal thermal and electrical conductivity from holography. JHEP 1011, 092 (2010). arXiv:1008.2944[hep-th]

    Article  MATH  ADS  Google Scholar 

  42. Kalaydzhyan, T., Kirsch, I.: Fluid-gravity model for the chiral magnetic effect. Phys. Rev. Lett. 106, 211601. arXiv:1102.4334[hep-th] (2011)

  43. Saremi, O.: The viscosity bound conjecture and hydrodynamics of M2-Brane theory at finite chemical potential. JHEP 0610, 083 (2006). arXiv:hep-th/0601159

    Article  MathSciNet  ADS  Google Scholar 

  44. Maeda, K., Natsuume, M., Okamura, T.: Viscosity of gauge theory plasma with a chemical potential from AdS/CFT correspondence. Phys. Rev. D 73, 066013 (2006). arXiv:hep-th/0602010

  45. Behrndt, K., Chamseddine, A. H., Sabra, W. A.: BPS Black holes in N = 2 five dimensional AdS supergravity. Phys. Lett. B 442, 97 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. Behrndt, K., Cvetic, M., Sabra, W. A.: Non-extreme black holes of five dimensional N = 2 AdS supergravity. Nucl. Phys. B 553, 317 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. Lin, F. L., Matsuo, T.: Jet quenching parameter in medium with chemical potential from AdS/CFT. Phys. Lett. B 641, 45 (2006)

    Article  ADS  Google Scholar 

  48. Armesto, N., Edelstein, J. D., Mas, J.: Jet quenching at finite ‘t Hooft coupling and chemical potential from AdS/CFT. JHEP 0609, 039 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  49. Jain, S.: Holographic electrical and thermal conductivity in strongly coupled gauge theory with multiple chemical potentials. JHEP 1003, 101 (2010). arXiv:0912.2228[hep-th]

    Article  MATH  ADS  Google Scholar 

  50. Weinberg, S.: The quantum theory of fields, vol. 1 and 2. Cambridge University Press (1995)

  51. Liu, H., Tseytlin, A. A.: Nucl. Phys. B 533 (1998), arXiv:hep-th/9804083; Henningson, M., Skenderis, K.: JHEP 9807, 023 (1998). arXiv:hep-th/9806087

  52. Blau, M., Narain, K. S., Gava, E.: . JHEP 9909, 018 (1999). arXiv:hep-th/9904179

    Article  ADS  Google Scholar 

  53. Wald, R. M.: . Phys. Rev. D 48, 3427 (1993). arXiv:gr-qc/9307038

    Article  MathSciNet  ADS  Google Scholar 

  54. Jacobson, T., Kang, G., Myers, R. C.: . Phys. Rev. D 52, 3518 (1995). arXiv:gr-qc/9312023

    Article  MathSciNet  ADS  Google Scholar 

  55. Myers, R. C.: Black holes in higher curvature gravity. arXiv:gr-qc/9811042

  56. Boulware, D. G., Deser, S.: . Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

  57. Metsaev, R. R., Tseytlin, A. A.: . Nucl. Phys. B293, 385 (1987). A. A. Tseytlin, Nucl. Phys.

    Article  ADS  Google Scholar 

  58. Cho, Y. M., Neupane, I. P., Wesson, P. S.: . Nucl. Phys. B521, 388 (2002). arXiv:hep-th/0104227

    Article  ADS  Google Scholar 

  59. Randall, L., Sundrum, R.: . Phys. Rev. Lett. 83, 4690 (1999). arXiv:hep-th/9906064

    Article  MathSciNet  ADS  Google Scholar 

  60. Buchel, A., Liu, J.T.: Universality of the shear viscosity in supergravity. Phys. Rev. Lett. 93, 090602 (2004). arXiv:hep-th/0311175

    Article  ADS  Google Scholar 

  61. Kats, Y., Petrov, P.: Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory. JHEP 0901, 044 (2009). arXiv:0712.0743[hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  62. Buchel, A., Myers, R. C., Sinha, A.: Beyond η/s = 1/4π. JHEP 0903, 084 (2009). arXiv:0812.2521 [hep-th]

    Article  ADS  Google Scholar 

  63. Chakrabarti, S. K., Jain, S., Mukherji, S.: Viscosity to entropy ratio at extremality. JHEP 1001, 068 (2010). arXiv:0910.5132[hep-th]

    Article  MATH  ADS  Google Scholar 

  64. Ge, X.-H., Sin, S.-J.: Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant. JHEP 0905, 051 (2009). arXiv:0903.2527[hep-th]

    Article  ADS  Google Scholar 

  65. Ge, X.-H., Matsuo, Y., Shu, F.-W.: Viscosity Bound, Causality violation and instability with stringy correction and charge. JHEP 0810, 009 (2008). arXiv:0808.2354[hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  66. Shu, F.-W.: The quantum viscosity bound in lovelock gravity. Phys. Lett. B 685, 325 (2010). arXiv:0910.0607[hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  67. Cremonini, S., Hanaki, K., Liu, J.T., Szepietowski, P.: Black holes in five-dimensional gauged supergravity with higher derivatives. arXiv:0812.3572[hep-th]

  68. Cremonini, S.: The shear viscosity to entropy ratio: a status report. Mod. Phys. Lett.B 25, 1867–1888 (2011). arXiv:1108.0677[hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  69. Fadafan, K.B.: Charge effect and finite ‘t Hooft coupling correction on drag force and Jet Quenching Paramete. arXiv:0809.1336[hep-th]

  70. Fadafan, K. B.: R2 curvature-squared corrections on drag force. JHEP 0812, 051 (2008). arXiv:0803.2777[hep-th]

    Article  Google Scholar 

  71. Avramis, S. D., Sfetsos, K.: Supergravity and the jet quenching parameter in the presence of R-charge densities. JHEP 0701, 065 (2007). arXiv:hep-th/0606190

    Article  MathSciNet  ADS  Google Scholar 

  72. Liu, J.T., Szepietowski, P.: Higher derivative corrections to R-charged AdS5 black holes and field redefinitions. Phys. Rev. D 79, 084042. arXiv:0806.1026[hep-th] (2009)

  73. Brigante, M., Liu, H., Myers, R.C., Shenker, S., Yaida, S.: Viscosity Bound and Causality Violation. Phys. Rev. Lett. 100, 191601. arXiv:0802.3318[hep-th] (2008)

  74. Sadeghi, J., Pourhassana, B., Amani, A. R.: The effect of higher derivative correction on η/s and conductivities in STU model. Int. J. Theor. Phys. 52, 42–52 (2013). arXiv:1011.2291[hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  75. Sadeghi, J., Pourhassan, B.: Energy loss and jet quenching parameter in a thermal non-relativistic, non-commutative Yang-Mills plasma. Acta Phys. Pol. B 43, 1825 (2012). arXiv:1002.1596[hep-th]

    Article  Google Scholar 

  76. Herzog, C. P., Karch, A., Kovtun, P., Kozcaz, C., Yaffe, L.G.: . J High Energy Phys. 0607, 013 (2006). arXiv:hep-th/0605158

    Article  ADS  Google Scholar 

  77. Herzog, C. P.: . J. High Energy Phys. 0609, 032 (2006). arXiv:hep-h/0605191

    Article  ADS  Google Scholar 

  78. Horowitz, G.T., Ross, F.: Possible resolution of black hole singularities from large N gauge theory. arXiv:hep-th/9803085

  79. Witten, E.: Anti-de Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories. arXiv:hep-th/9803131

  80. Hawking, S. W., Page, D.: Thermodynamics of black holes in anti de Sitter space. Commun. Math. Phys. 87, 577 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  81. Obregon, O., Ryan, M.: . Mod. Phys. Lett. 13, 3251 (1998)

    Article  ADS  Google Scholar 

  82. Fayyazuddin, A., Spalinski, M.: Nucl. Phys. B 535, 219 (1998). arXiv:hep-th/9805096; Aharony, O., Fayyazuddin, A., Maldacena, J.: JHEP 9807, 013 (1998). arXiv:hepth/9806159

  83. Bilal, A., Chu, C. -S. Nucl. Phys. B562, 181 (1999). arXiv:hep-th/9907106. M. Fukuma, S. Matsuura and T. Sakai, arXiv:hep-th/0103187

  84. Kim, J.E., Kyae, B., Lee, H.M.: . Phys.Rev. D62, 045013 (2000). arXiv:hep-ph/9912344, Phys.Rev. D62 (2000) 045013; J.E. Kim and H.M. Lee, arXiv:hep-th/0010093; N. Deruelle and T. Dolezel, arXiv:gr-qc/0004021, Phys.Rev. D62 (2000) 103502; S. Nojiri and S.D. Odintsov, arXiv:hep-th/0006232, JHEP 0007 (2000) 049; N.E. Mavromatos and J. Rizos, arXiv:hep-th/0008074, Phys. Rev. D62 (2000) 124004; K. Kashima, arXiv:hep-th/0010286; M. Giovannini, arXiv:hep-th/0011153; S. Mukohyama, arXiv:hepth/0101038, Phys. Rev. D63 (2001) 104025

    ADS  Google Scholar 

  85. Nojiri, S., Odintsov, S. D.: Phys. Lett. B493, 153 (2000). arXiv:hep-th/0007205; Nojiri, S., Odintsov, S.D., Ogushi, S.: arXiv:hep-th/0010004

  86. Nojiri, S., Odintsov, S.D.: arXiv:hep-th/9903033

  87. Nojiri, S., Odintsov, S.D., Ogushi, S.: . arXiv:hep-th/0105117

  88. Emparan, R., Johnson, C. V., Myers, R. C.: . Phys. Rev. D 60, 104001 (1999). arXiv:hep-th/9903238

    Article  MathSciNet  ADS  Google Scholar 

  89. Balasubramanian, V., Kraus, P.: A stress tensor for anti-de Sitter gravity. Commun. Math. Phys. 208, 413 (1999). arXiv:hep-th/9902121

    Article  MathSciNet  MATH  ADS  Google Scholar 

  90. Pourhassan, B., Faizal, M.: . Nuclear Phys. B 913, 834 (2016)

    Article  ADS  Google Scholar 

  91. Pourhassan, B., Upadhyay, S., Saadat, H., Farahani, H.: . Nuclear Phys. B 928, 415 (2018)

    Article  MathSciNet  Google Scholar 

  92. Ali, A. F.: . JHEP 1209, 067 (2012)

    Article  ADS  Google Scholar 

  93. Solodukhin, S. N.: . Phys. Rev. D57, 2410 (1998)

    ADS  Google Scholar 

  94. Lowe, D. A., Roy, S.: Phys. Rev. D 82, 063508 (2010)

  95. Govindarajan, T. R., Kaul, R. K., Suneeta, V.: . Class. Quant. Grav. 18, 2877 (2001)

    Article  ADS  Google Scholar 

  96. Pourhassan, B., et al.: . Eur. Phys. J. C 77, 555 (2017)

    Article  ADS  Google Scholar 

  97. Wald, R. M.: Phys. Rev. D 48, 3427 (1993). arXiv:gr-qc/9307038; Iyer, V., Wald, R. M.: Phys. Rev. D 50, 846 (1994). arXiv:gr-qc/9403028

  98. Dowker, F., Gregory, R., Traschen, J.: . Phys. Rev. D45, 2762 (1992)

    ADS  Google Scholar 

  99. Mignemi, S., Stewart, N. R.: Charged black holes in effective string theory. Phys. Rev. D47, 5259 (1993). arXiv:hep-th/9212146

    MathSciNet  ADS  Google Scholar 

  100. Giveon, A., Gorbonos, D.: On black fundamental strings. JHEP 0610, 038 (2006). arXiv:hep-th/0606156

    Article  MathSciNet  ADS  Google Scholar 

  101. Dabholkar, A., Kallosh, R., Maloney, A.: . JHEP 0412, 059 (2004). arXiv:hep-th/0410076

    Article  ADS  Google Scholar 

  102. Paranjape, A., Sarkar, S., Padmanabhan, T.: . Phys. Rev. D74, 104015 (2006). arXiv:hep-th/0607240

    ADS  Google Scholar 

  103. Guica, M., Huang, L., Li, W., Strominger, A.: . JHEP 0610, 036 (2006). arXiv:hep-th/0505188

    Article  ADS  Google Scholar 

  104. Brustein, R., Gorbonos, D., Hadad, M.: Wald’s entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling. Phys. Rev. D 79, 044025 (2009)

  105. Garraffo, C., Giribet, G.: Mod. Phys. Lett. A23:1801-1818 (2008). arXiv:0805.3575v4[gr-qc]

  106. Lu, M., Wise, M. B.: . Phys. Rev. D47, 3095–3098 (1993). arXiv:gr-qc/9301021

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Zomorrodian.

Ethics declarations

Conflict of Interests

The author declares that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assrary, M., Sadeghi, J. & Zomorrodian, M.E. Study the Role of R2 Term in Cosmological AdS-like Space by AdS/CFT Correspondence. Int J Theor Phys 60, 3254–3270 (2021). https://doi.org/10.1007/s10773-021-04873-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04873-2

Keywords

Navigation