Skip to main content
Log in

Conductivity Sensors Based System Development and Application to Investigate the Interfacial Behaviour between Supersonic Steam Jet and Water

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

An Erratum to this article was published on 14 September 2021

This article has been updated

Abstract

This study is an effort to comprehend the description of the vapour-liquid flows associated with the transformation of the phase, which may assist in determining mass, momentum and energy transfer within the interfacial region containing the steam and water. This study describes the development of a void fraction measurement sensory system, which is based on AC based electrodes, referred scientifically as Electrical Resistance Tomography (ERT) system. ERT sensors based system was applied to emphasize the phenomenon involving supersonic steam injection into a column of water. Data acquisition system supporting the ERT technique was applied for the given time interval and the acquired data was processed by using a free code known as EIDORS. Images thus obtained by use of EIDORS provided a planar picture of supersonic steam jet surrounding by the water in a vessel. Images represent the broadly visible boundaries among steam and water phases, and the turbulent interface between them. It has been found that with rising temperature 30–60°C, the area under the effect of the steam jet has been increased from 46.51–65.40% at 3.0 bar of steam’s inlet pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Change history

REFERENCES

  1. WuX.-Z., Yan J.-J., Li W.-J., Pan D.-D., and Chong, D.-T., Chem. Eng. Sci., 2009, vol. 64, p. 5002. https://doi.org/10.1016/J.CES.2009.08.007

    Article  Google Scholar 

  2. Chan, C.K. and Lee, C.K.B., Int. J. Multiphase Flow, 1982, vol. 8, p. 11. https://doi.org/10.1016/0301-9322(82)90003-9

    Article  Google Scholar 

  3. Kerney, P.J., Faeth, G.M., and Olson, D.R., AIChE J., 1972, vol. 18, p. 548. https://doi.org/10.1002/aic.690180314

    Article  Google Scholar 

  4. Weimer, J.C., Faeth, G.M., and Olson, D.R., AIChE J., 1973, vol. 19, p. 552. https://doi.org/10.1002/aic.690190321

    Article  Google Scholar 

  5. Del Ttin, G., Lavagno, E., and Malandrone, M., Proc. 3rd Multi-Phase Flow and Heat Transfer Symposium-Workshop, Miami Beach, FL, 1983, pp. 134–136.

  6. Khan, A., Haq, N.U., Chughtai, I.R., Shah, A., and Sanaullah, K., Int. J. Heat Mass Transfer, 2014, vol. 73, p. 521. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2014.02.035

    Article  Google Scholar 

  7. Sanaullah, K., Khan, A., Takriff, M.S., Zen, H., Shah, A., Chughtai, I.R., Jamil, T., Fong, L.S., and Haq, N.U., Int. J. Heat Mass Transfer, 2015, vol. 84, p. 178. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2014.12.073

    Article  Google Scholar 

  8. Khan, A., Sanaullah, K., Takriff, M.S., Zen, H., Ri-git, A.R.H., Shah, A., Chughtai, I.R., and Jamil, T., Chem. Eng. Sci., 2016, vol. 146, p. 44. https://doi.org/10.1016/J.CES.2016.01.056

    Article  Google Scholar 

  9. Datta, D. and Jang, C., Proc. IAEA 2nd Int. Symposium on Nuclear Power Plant Life Management, Shanghai, 2007.

  10. Shah, A., Chughtai, I.R., and Inayat, M.H., Chin. J. Chem. Eng., 2010, vol. 18, p. 577. https://doi.org/10.1016/S1004-9541(10)60261-3

    Article  Google Scholar 

  11. Khan, A., Sanaullah, K., Sobri Takriff, M., Hussain, A., Shah, A., and Rafiq Chughtai, I., Flow Meas. Instrum., 2016, vol. 47, p. 35. https://doi.org/10.1016/J.FLOWMEASINST.2015.12.002

    Article  Google Scholar 

  12. Davies, J.T. and Ting, S.T., Chem. Eng. Sci., 1967, vol. 22, p. 1539. https://doi.org/10.1016/0009-2509(67)80192-1

    Article  Google Scholar 

  13. Jeffries, R.B., Scott, D.S., and Rhodes, E., Proc. Inst. Mech. Eng., Conf. Proc., 1969, vol. 184, p. 204. https://doi.org/10.1243/pime_conf_1969_184_097_02

  14. Van Meulenbroek, B.M. and van de Wakker, B.M., Int. J. Heat Mass Transfer, 1985, vol. 28, p. 886. https://doi.org/10.1016/0017-9310(85)90240-6

    Article  Google Scholar 

  15. Woodmansee, D.E. and Hanratty, T.J., Chem. Eng. Sci., 1969, vol. 24, p. 299. https://doi.org/10.1016/0009-2509(69)80038-2

    Article  Google Scholar 

  16. Wu, X.Z., Yan, J.J., Li, W.J., Pan, D.D., and Chong, D.T., Chem. Eng. Sci., 2009, vol. 64, p. 5002. https://doi.org/10.1016/j.ces.2009.08.007

    Article  Google Scholar 

  17. Huang, C.N., Yu, F.M., and Chung, H.Y., IEEE Trans. Instrum. Meas., 2008, vol. 57, p. 1193. https://doi.org/10.1109/TIM.2007.915149

    Article  Google Scholar 

  18. Jia, J., Babatunde, A., and Wang, M., Flow Meas. Instrum., 2015, vol. 41, p. 75. https://doi.org/10.1016/j.flowmeasinst.2014.10.010

    Article  Google Scholar 

  19. Dyakowski, T., Meas. Sci. Technol., 1996, vol. 7, p. 343. https://doi.org/10.1088/0957-0233/7/3/015

    Article  ADS  Google Scholar 

  20. Woldesemayat, M.A. and Ghajar, A.J., Int. J. Multiphase Flow, 2007, vol. 33, p. 347. https://doi.org/10.1016/j.ijmultiphaseflow.2006.09.004

    Article  Google Scholar 

  21. Hanratty, T.J., Gas-Liquid Flow in Pipelines, Lemont, IL: Argonne, 2005. https://doi.org/10.2172/837116

  22. Zucrow, M.J. and Hoffman, J.D., Gas Dynamics, New York: John Wiley & Sons, 1976.

    Google Scholar 

  23. P2000 Electrical Resistance Tomography System ITS System 2000 Version 5.0 Software Operating Manual, 2005.

  24. York, T.A., Process Imaging for Automatic Control, McCann, H. and Scott, D.M., Eds., SPIE, 2001, p. 175. https://doi.org/10.1117/12.417163

  25. Pinheiro, P.A.T., Loh, W.W., and Dickin, F.J., Electron. Lett., 1998, vol. 34, p. 69. https://doi.org/10.1049/el:19980092

    Article  ADS  Google Scholar 

  26. Polydorides, N. and Lionheart, W.R.B., Meas. Sci. Technol., 2002, vol. 13, p. 1871. https://doi.org/10.1088/0957-0233/13/12/310

    Article  ADS  Google Scholar 

  27. Khan, A., Sanaullah, K., Takriff, M.S., Zen, H., Ri-git, A.R.H., Shah, A., Chughtai, I.R., and Jamil, T., Chem. Eng. Sci., 2016, vol. 146, p. 44. https://doi.org/10.1016/j.ces.2016.01.056

    Article  Google Scholar 

  28. Steam Tables, A-to-Z Guide to Thermodynamics, Heat & Mass Transfer, and Fluids Engineering, New York: Begell House. https://doi.org/10.1615/AtoZ.s.steam_tables

  29. Thompson, C.M. and Shure, L., Image Processing Toolbox: For Use with MATLAB [User’s Guide], Natick, MA: MathWorks, 1995.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Russian Government and Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University for their support to this work through Act 211 Government of the Russian Federation, contract no. 02. A03.21.0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afrasyab Khan.

Additional information

The name of the seventh author should read Ahmad Salam Farooqi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Sanaullah, K., Spiridonov, E.K. et al. Conductivity Sensors Based System Development and Application to Investigate the Interfacial Behaviour between Supersonic Steam Jet and Water. Instrum Exp Tech 64, 630–639 (2021). https://doi.org/10.1134/S0020441221040126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221040126

Navigation