Skip to main content
Log in

Managing consumer privacy risk: The effects of privacy breach insurance

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

Inappropriate management of information security of e-commerce websites exerts a negative effect on consumers’ purchase decisions because it may cause consumer data leakage. To mitigate this negative effect, some e-commerce firms such as Taobao in China voluntarily offer privacy breach insurance to consumers. Even though this fresh management of information security is becoming popular in practice, there are still rare academic studies concerning this hot topic. To fill this gap, this paper constructs a multi-stage game-theoretic model to examine the impacts of privacy breach insurance on a monopoly firm and to identify the market condition under which the firm would like to employ privacy breach insurance. We find that when consumers’ data leakage concern is low and firm’s data leakage possibility is low, privacy breach insurance always encourages more consumers to purchase. Otherwise, privacy breach insurance stimulates purchase only when the compensation of privacy breach insurance remains high. Furthermore, we reveal that the monopoly firm would provide privacy breach insurance when consumers’ data leakage concern remains low. These fresh results suggest that privacy breach insurance acts as an efficient measure e-commerce firms could take to address increasingly serious information security threats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://news.ifeng.com/c/7fceB3LbUwI

  2. http://www.eeo.com.cn/2013/1112/251935.shtml

  3. http://yuqing.people.com.cn/n/2012/0720/c210118-18561450.html

References

  1. Acquisti, A., Friedman, A., & Telang, R. (2006). Is There a Cost to Privacy Breaches? An Event Study. ICIS 2006 Proceedings. 94. http://aisel.aisnet.org/icis2006/94.

  2. Angst, C. M., Block, E. S., D’Arcy, J., & Kelley, K. (2017). When do it security investments matter? Accounting for the influence of institutional factors in the context of healthcare data breaches. MIS Quarterly, 41(3), 893-A8.

    Article  Google Scholar 

  3. Ansari, A., & Mela, C. F. (2003). E-customization. J Marketing Res, 40(2), 131–145.

    Article  Google Scholar 

  4. Ariffin, S. K., Mohan, T., & Goh, Y.-N. (2018). Influence of consumers’ perceived risk on consumers’ online purchase intention. Journal of Research in Interactive Marketing, 12(3), 309–327.

    Article  Google Scholar 

  5. Awad, N. F., & Krishnan, M. (2006). The personalization privacy paradox: An empirical evaluation of information transparency and the willingness to be profiled online for personalization. MIS Quarterly, 30(1), 13–28.

    Article  Google Scholar 

  6. Bellman, S., Johnson, E., Kobrin, S., & Lohse, G. (2004). International differences in information privacy concerns: A global survey of consumers. The Information Society, 20(5), 313–324.

    Article  Google Scholar 

  7. Bélanger, F., Hiller, J., & Smith, W. J. (2002). Trustworthiness in electronic commerce: The role of privacy, security, and site attributes. Journal of Strategic Information Systems, 11(3), 245–270.

    Article  Google Scholar 

  8. Cardenas, J., Coronado, A., Donald, A., Parra, F., & Mahmood, A. M. (2012). The Economic Impact of Security Breaches on Publicly Traded Corporations: An Empirical Investigation. AMCIS 2012 Proceedings. 7. http://aisel.aisnet.org/amcis2012/proceedings/StrategicUseIT/7.

  9. Casadesus-Masanell, R., & Hervas-Drane, A. (2015). Competing with privacy. Management Science, 61(1), 229–246.

    Article  Google Scholar 

  10. Chellappa, R. K., & Sin, R. G. (2005). Personalization versus privacy: An empirical examination of the online consumer’s dilemma. Information Technology and Management, 6(2), 181–202.

    Article  Google Scholar 

  11. Choi, B. C. F., & Land, L. (2016). The effects of general privacy concerns and transactional privacy concerns on Facebook apps usage. Information & Management, 53(7), 868–877.

    Article  Google Scholar 

  12. Dinev, T., & Hart, P. (2004). Internet privacy concerns and their antecedents-measurement validity and a regression model. Behaviour & Information Technology, 23(6), 413–422.

    Article  Google Scholar 

  13. D’Souza, G., & Phelps, J. E. (2009). The privacy paradox: The case of secondary disclosure. Review of Marketing Science, 7(1), 0000102202154656161072.

    Article  Google Scholar 

  14. Earp, J. B., & Payton, F. C. (2006). Information privacy in the service sector: An exploratory study of health care and banking professionals. Journal of Organizational Computing and Electronic Commerce, 16(2), 105–122.

    Article  Google Scholar 

  15. Flavia ‘n, C., & Guinalı ‘u, M. (2006). Consumer trust, perceived security and privacy policy. Industrial Management & Data Systems, 106(5), 601–620.

    Article  Google Scholar 

  16. Gao, X., Zhong, W., & Mei, S. (2014). A game-theoretic analysis of information sharing and security investment for complementary firms. Journal of the Operational Research Society, 65(11), 1682–1691.

    Article  Google Scholar 

  17. Gruzd, A., & Hernández-Garcíá, A. (2018). Privacy concerns and self-disclosure in private and public uses of social media. Cyberpsychology, Behavior, and Social Networking, 21(7), 418–428.

    Article  Google Scholar 

  18. Hann, I.-H., Hui, K.-L., Lee, S.-Y.T., & Png, I. P. L. (2007). Overcoming online information privacy concerns: An information-processing theory approach. Journal of Management Information Systems, 24(2), 13–42.

    Article  Google Scholar 

  19. Hauer, B. (2015). Data and information leakage prevention. Within the Scope of Information Security, 3, 2554–2565.

    Google Scholar 

  20. Hinz, O., Nofer, M., Schiereck, D., & Trillig, J. (2015). The influence of data theft on the share prices and systematic risk of consumer electronics companies. Information & Management, 52, 337–347.

    Article  Google Scholar 

  21. Hoadley, C. M., Xu, H., Lee, J. J., & Rosson, M. B. (2010). Privacy as information access and illusory control: The case of the facebook news feed privacy outcry. Electronic Commerce Research and Applications, 9, 50–60.

    Article  Google Scholar 

  22. Hong, W., & Thong, J. Y. L. (2013). Internet privacy concerns: an integrated conceptualization and four empirical studies. MIS Quarterly, 37(1), 275–298.

    Article  Google Scholar 

  23. Huang, Z., & Benyoucef, M. (2013). From e-commerce to social commerce: A close look at design features. Electronic Commerce Research and Applications, 12, 246–259.

    Article  Google Scholar 

  24. Hui, K.-L., Teo, H. H., & Lee, S.-Y.T. (2007). The value of privacy assurance: An exploratory field experiment. MIS Quarterly, 31(1), 19–33.

    Article  Google Scholar 

  25. Iyer, G., & Soberman, D. (2005). The targeting of advsertising. Marketing Science, 24(3), 461–476.

    Article  Google Scholar 

  26. Jeong, C. Y., Lee, S.-Y.T., & Lim, J.-H. (2019). Information security breaches and IT security investments: Impacts on competitors. Information & Management, 56(5), 681–695.

    Article  Google Scholar 

  27. Jiang, Z., Heng, C. H., & Choi, B. C. F. (2013). Privacy concerns and privacy-protective behavior. Information Systems Research, 24(3), 579–595.

    Article  Google Scholar 

  28. Kaul, R. (2019). A contemporary analysis of online privacy & data protection in the context of parallel privacy policies. Scholedge International Journal of Management & Development, 6(5), 67–70.

    Google Scholar 

  29. Korzaan, M. L., & Boswell, K. T. (2008). The influence of personality traits and information privacy concerns on behavioral intentions. The Journal of Computer Information Systems, 48(4), 15–24.

    Google Scholar 

  30. Kwon, J., & Johnson, M. E. (2014). Proactive versus reactive security investments in the healthcare sector. MIS Quarterly, 38(2), 451-A3.

    Article  Google Scholar 

  31. Kuo, F. Y., Lin, C. S., & Hsu, M. H. (2007). Assessing gender differences in computer professionals’ self-regulatory efficacy concerning information privacy practices. Journal of Business Ethics, 73(2), 145–160.

    Article  Google Scholar 

  32. Law, M., Kwok, R., & Ng, M. (2016). An extended online purchase intention model for middle-aged online users. Electronic Commerce Research and Applications, 20, 132–146.

    Article  Google Scholar 

  33. Lee, C. H., & Cranage, D. A. (2011). Personalization privacy paradox: The effects of personalized and privacy assurance on customer responses to travel Web sites. Tourism Management, 32, 987–994.

    Article  Google Scholar 

  34. Lee, D.-J., Ahn, J.-H., & Bang, Y. (2011). Managing consumer privacy concerns in personalization: A strategic analysis of privacy protection. MIS Quarterly, 35(2), 423–444.

    Article  Google Scholar 

  35. Lin, Y., & Wu, H. Y. (2008). Information privacy concerns, government involvement, and corporate policies in the customer relationship management context. Journal of Global Business and Technology, 4(1), 79–91.

    Google Scholar 

  36. Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users’ information privacy concerns (iuipc): the construct, the scale, and a causal model. Information Systems Research, 15(4), 336–355.

    Article  Google Scholar 

  37. Malhotra, A., & Malhotra, C. K. (2011). Evaluating customer information breaches as service failures: An event study approach. Journal of Service Research, 14(1), 44–59.

    Article  Google Scholar 

  38. Mousavizadeh, M., Kim, D. J., & Chen, R. (2016). Effects of assurance mechanisms and consumer concerns on online purchase decisions: An empirical study. Decision Support Systems, 92, 79–90.

    Article  Google Scholar 

  39. Mulder, T., & Tudorica, M. (2019). Privacy policies, cross-border health data and the GDPR. Information & Communications Technology Law, 28(3), 261–274.

    Article  Google Scholar 

  40. Nov O. & Wattal S. (2009). Social Computing Privacy Concerns: Antecedents and Effects [C]. in Proceedings of the 27th International Conference on Human Factors in Computing Systems, Boston, MA, April 4–9: 333–336.

  41. Postma, O. J., & Brokke, M. (2001). Personalized in practice: The proven effects of personalized. Journal of Database Marketing, 9(2), 137–142.

    Google Scholar 

  42. Ponte, E. B., Carvajal-Trujillo, E., & Escobar-Rodríguez, T. (2015). Influence of trust and perceived value on the intention to purchase travel online: Integrating the effects of assurance on trust antecedents. Tourism Management, 47, 286–302.

    Article  Google Scholar 

  43. Prakash, M., & Singaravel, G. (2015). An approach for prevention of privacy breach and information leakage in sensitive data mining. Computers and Electrical Engineering, 45, 134–140.

    Article  Google Scholar 

  44. Rehman, M., & Maseeh, H. I. (2020). Impact of YouTube advertising on purchase intention: A Pitch. Accounting and Management Information Systems, 19(4), 805–811.

    Google Scholar 

  45. Rose, E. A. (2006). An examination of the concern for information privacy in the new zealand regulatory context. Information & Management, 43(3), 322–335.

    Article  Google Scholar 

  46. Schreiber, C. (2014). Google’s targeted advertising: an analysis of privacy protections in an internet age. Transnational Law & Contemporary Problems , 24(1), 269–291.

    Google Scholar 

  47. Sen, R., & Borle, S. (2015). Estimating the contextual risk of data breach: An empirical approach. Journal of Management Information Systems, 32(2), 314–341.

    Article  Google Scholar 

  48. Shauhin, A., & Talesh. . (2018). Data breach, privacy, and cyber insurance: How insurance companies act as “compliance managers” for businesses. Law & Social Inquiry, 43(2), 417–440.

    Article  Google Scholar 

  49. Smith, A. D. (2005). Exploring service marketing aspects of e-personalized and its impact on online consumer behavior. Services Marketing Quarterly, 27(2), 89–102.

    Article  Google Scholar 

  50. Smith, H. J., Milberg, S. J., & Burke, S. J. (1996). Information privacy: measuring individuals’ concerns about organizational practices. MIS Quarterly, 20(2), 167–196.

    Article  Google Scholar 

  51. Son, J.-Y., & Kim, S. S. (2008). Internet users’ information privacy-protective responses: A taxonomy and a nomological model. MIS Quart., 32(3), 503–529.

    Article  Google Scholar 

  52. Sutanto, J., Palme, E., Tan, C.-H., & Phang, C.-W. (2013). Addressing the personalized-privacy paradox: An empirical assessment from a field experiment on smartphone users. MIS Quarterly, 37(4), 1141–1164.

    Article  Google Scholar 

  53. The Wall Street Journal. 2010. Facebook in Privacy Breach. <http://terriau.org/blog/postings/20101018%20Facebook%20in%20Online%20Privacy%20Breach%3B%20Applications%20Transmitting%20Identifying%20Information%20-%20WSJ.pdf>

  54. TRUSTe. Consumer opinion and business impact. TRUSTe Research Report. <http://info.truste.com/lp/truste/Web-Resource-HarrisConsumer Research US-Report Q12014 _LP.html>; 2014 [accessed 10.02.15].

  55. Van Slyke, C., Shim, J. T., Johnson, R., & Jiang, J. (2006). Concern for information privacy and online consumer purchasing. Journal of the Association for Information Systems, 7(6), 415–443.

    Article  Google Scholar 

  56. Verena, M., Wottrich, P., Verlegh, W. J., & Smit, E. G. (2017). The role of customization, brand trust, and privacy concerns in advergaming. International Journal of Advertising, 36(1), 60–81.

    Article  Google Scholar 

  57. Wan, L., & Zhang, C. (2014). Responses to trust repair after privacy breach incidents. Journal of Service Science Research, 6, 193–224.

    Article  Google Scholar 

  58. Wang, S., & Huff, L. C. (2007). Explaining buyers’ responses to sellers’ violation of trust. European Journal of Marketing, 41(9/10), 1033–1052.

    Article  Google Scholar 

  59. Wang, Z., Wang, N., Su, X., & Ge, S. (2016). Differentiated management strategies on cloud computing data security driven by data value. Information Security Journal: A Global Perspective, 25, 280–294.

    Google Scholar 

  60. Xu, H., Teo, H.-H., Bernard, C. Y., & Tan, R. A. (2012). Research note—effects of individual self-protection, industry self-regulation, and government regulation on privacy concerns: A study of location-based services. Information Systems Research, 23(4), 1342–1363.

    Article  Google Scholar 

  61. Xu, H., Luo, X., Carroll, J. M., & Rosson, M. B. (2011). The personalization privacy paradox: An exploratory study of decision-making process for location-aware marketing. Decision Support Systems, 51, 42–52.

    Article  Google Scholar 

  62. Yang, H.L., & Miao, X.M. (2008). Concern for Information Privacy and Intention to Transact Online. In Proceedings of the 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, October 12–14, 1–4.

  63. Yang, Z., & Lui, J. C. S. (2014). Security adoption and influence of cyber-insurance markets in heterogeneous networks. Performance Evaluation, 74, 1–17.

    Article  Google Scholar 

  64. Yannacopoulos, A. N., Lambrinoudakis, C., Gritzalis, S., Xanthopoulos, S. Z., & Katsikas, S. N. (2008). Modeling Privacy Insurance Contracts and Their Utilization in Risk Management for ICT Firms. In S. Jajodia & J. Lopez (Eds.), Computer Security - ESORICS 2008. Lecture Notes in Computer Science. (Vol. 5283). Berlin: Springer.

    Google Scholar 

  65. Zarei, G., Nuri, B. A., & Noroozi, N. (2019). The effect of Internet service quality on consumers’ purchase behavior: The role of satisfaction, attitude, and purchase intention. Journal of Internet Commerce, 18(2), 197–220.

    Article  Google Scholar 

  66. Zarouali, B., Ponnet, K., Walrave, M., & Poels, K. (2017). Do you like cookies? Adolescents’ skeptical processing of retargeted Facebook-ads and the moderating role of privacy concern and a textual debriefing. Computers in Human Behavior, 69, 157–165.

    Article  Google Scholar 

  67. Zhang, J., Zhong, W., & Mei, S. (2012). Competitive effects of purchase-based targeted advertising. Journal of Electronic Commerce in Organizations, 10(4), 71–84.

    Article  Google Scholar 

  68. Zhang, J., & He, X. (2019). Targeted advertising by asymmetric firms. Omega, 89, 136–150.

    Article  Google Scholar 

  69. Zhang, J., & Li, K. J. (2020). Quality disclosure under consumer loss aversion. Management Science. https://doi.org/10.1287/mnsc.2020.3745

    Article  Google Scholar 

  70. Zhang, X., Liu, S., Chen, X., Wang, L., Gao, B., & Zhu, Q. (2018). Health information privacy concerns, antecedents, and information disclosure intention in online health communities. Information & Management, 55(4), 482–493.

    Article  Google Scholar 

  71. Zhao, X., & Xue, L. (2012). Competitive target advertising and consumer data sharing. Journal of Management Information, 29(3), 189–221.

    Google Scholar 

  72. Zlatolas, L. N., Welzer, T., Hericko, M., & Hölbl, M. (2015). Privacy antecedents for SNS self-disclosure: The case of Facebook. Computers in Human Behavior, 45, 158–167.

    Article  Google Scholar 

  73. Zukowski, T., &Brown, I. (2007). Examining the influence of demographic factors on internet users’ information privacy concerns. In: Proceedings of the 2007 Annual research conference of the south african institute of computer scientists and information technologists on it research in developing countries, Port Elizabeth, South Africa, October 2–3:197–204.

Download references

Funding

This work was supported by the National Social Science, China [Grant No. 17BGL196].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shue Mei.

Additional information

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations'' (in PDF at the end of the article below the references; in XML as a back matter article note

Appendices

Appendix A

Solving the first-order derivation of function \(n^{F}\) with respect to \(k\), we can get

$$ \frac{{\partial n^{F} }}{{\partial k}} = \frac{{4\gamma \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } - \left( {2\left( {1 - \alpha + \gamma k} \right)\gamma + 12\gamma \left( {1 + \gamma } \right)\omega } \right)}}{{6\sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } }} $$
(A1)

Letting \(X = 2\left( {1 - \alpha + \gamma k} \right)\gamma + 12\gamma \left( {1 + \gamma } \right)\omega\) and \(Y = 4\gamma \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega }\), we can get that if \(Y - X > 0\),\(\frac{{\partial n^{F} }}{{\partial k}} > 0\). Further, we can get

$$ Y^{2} - X^{2} = 12\gamma ^{2} \left[ {\gamma ^{2} k^{2} + 2\gamma \left( {\left( {1 - \alpha } \right) + 6\left( {1 + \gamma } \right)\omega } \right)k + \left( {1 - \alpha - 6\left( {1 + \gamma } \right)\omega } \right)\left( {1 - \alpha + 2\left( {1 + \gamma } \right)\omega } \right)} \right] $$
(A2)

For \(X > 0\) and \(Y > 0\), we can get that if \(Y^{2} - X^{2} > 0\), then \(Y - X > 0\).

By analyzing equation (a2), we can find that if.

\(1 - \alpha - 6\left( {1 + \gamma } \right)\omega \ge 0\) (a3),

then \(Y - X > 0\). When \(\omega < \frac{{1 - \alpha }}{6}\) and \(\gamma \le \frac{{1 - \alpha }}{{6\omega }} - 1\), equation (a3) holds.

Furthermore, if

$$ 1 - \alpha - 6\left( {1 + \gamma } \right)\omega < 0 $$
(A4)

then when \(k > \frac{{ - \left( {\left( {1 - \alpha } \right) + 6\left( {1 + \gamma } \right)\omega } \right) + 4\sqrt {4\left( {1 + \gamma } \right)^{2} \omega ^{2} + \left( {1 - \alpha } \right)\left( {1 + \gamma } \right)\omega } }}{\gamma }\), equation (a2) holds. Analyzing equation (A4), we can get when 1) \(\omega \ge \frac{{1 - \alpha }}{6}\); or 2)\(\omega < \frac{{1 - \alpha }}{6}\) and \(\gamma > \frac{{1 - \alpha }}{{6\omega }} - 1\), equation (A4) holds.

In summary, according to the above results, we can get that.

  • (1) if \(\omega < \frac{{1 - \alpha }}{6}\) and \(\gamma \le \frac{{1 - \alpha }}{{6\omega }} - 1\), then \(\frac{{\partial n^{F} }}{{\partial k}} > 0\);

  • (2) if \(\omega < \frac{{1 - \alpha }}{6}\) and \(\gamma > \frac{{1 - \alpha }}{{6\omega }} - 1\), then when \(k > k_{0}\), \(\frac{{\partial n^{F} }}{{\partial k}} > 0\) and when \(k < k_{0}\), \(\frac{{\partial n^{F} }}{{\partial k}} < 0\);

  • (3) if \(\omega \ge \frac{{1 - \alpha }}{6}\), then when \(k > k_{0}\), \(\frac{{\partial n^{F} }}{{\partial k}} > 0\) and when \(k < k_{0}\), \(\frac{{\partial n^{F} }}{{\partial k}} < 0\).

Here, \(k_{0} = \frac{{ - \left( {\left( {1 - \alpha } \right) + 6\left( {1 + \gamma } \right)\omega } \right) + 4\sqrt {4\left( {1 + \gamma } \right)^{2} \omega ^{2} + \left( {1 - \alpha } \right)\left( {1 + \gamma } \right)\omega } }}{\gamma }\).

Appendix B

Solving the first-order derivation of function \(n^{F}\) with respect to \(\gamma\), we can get

$$ \frac{{\partial n^{F} }}{{\partial \gamma }} = \frac{{2k\sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } - \left[ {\left( {1 - \alpha + \gamma k} \right)k + 6\left( {1 + 2\gamma } \right)k\omega } \right]}}{{3\sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } }} $$
(A5)

Letting \(M = 2k\sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega }\) and \(N = \left[ {\left( {1 - \alpha + \gamma k} \right)k + 6\left( {1 + 2\gamma } \right)k\omega } \right]\), we can get that if \(M - N > 0\),\(\frac{{\partial n^{F} }}{{\partial \gamma }} > 0\). Further, we can get

$$ M^{2} - N^{2} = 3k^{2} \left[ {\left( {k + 12\omega } \right)\left( {k - 4\omega } \right)\gamma ^{2} + 2\left( {\left( {1 - \alpha } \right) + 6\omega } \right)\left( {k - 4\omega } \right)\gamma + \left( {1 - \alpha - 6\omega } \right)\left( {1 - \alpha + 2\omega } \right)} \right] $$
(A6)

For \(M > 0\) and \(N > 0\), we can get that if \(M^{2} - N^{2} > 0\), then \(M - N > 0\).

By analyzing equation (A6), we can find that:

  • (1) if \(\left( {k - 4\omega } \right) \ge 0\) and \(\left( {1 - \alpha - 6\omega } \right) > 0\), \(M > N\). That is, if \(k \ge 4\omega\) and \(\omega < \frac{{1 - \alpha }}{6}\),\(M > N\);

  • (2) if \(\left( {k - 4\omega } \right) \ge 0\) and \(\left( {1 - \alpha - 6\omega } \right) \le 0\), we have \(k \ge 4\omega\) and \(\omega \ge \frac{{1 - \alpha }}{6}\). Under this condition, when \(\gamma > \frac{{ - \left( {\left( {1 - \alpha } \right) + 6\omega } \right)\left( {k - 4\omega } \right) + 4\sqrt {\left( {k - 4\omega } \right)\omega \left( { - \left( {1 - \alpha } \right)^{2} + k\left( {1 - \alpha } \right) + 3k\omega } \right)} }}{{\left( {k + 12\omega } \right)\left( {k - 4\omega } \right)}}\), \(M > N\); and when \(\gamma < \frac{{ - \left( {\left( {1 - \alpha } \right) + 6\omega } \right)\left( {k - 4\omega } \right) + 4\sqrt {\left( {k - 4\omega } \right)\omega \left( { - \left( {1 - \alpha } \right)^{2} + k\left( {1 - \alpha } \right) + 3k\omega } \right)} }}{{\left( {k + 12\omega } \right)\left( {k - 4\omega } \right)}}\),\(M < N\);

  • (3) if \(\left( {k - 4\omega } \right) < 0\) and \(\left( {1 - \alpha - 6\omega } \right) > 0\), we have \(k < 4\omega\) and \(\omega < \frac{{1 - \alpha }}{6}\). Under this condition, when \(\gamma < \frac{{ - \left( {\left( {1 - \alpha } \right) + 6\omega } \right)\left( {k - 4\omega } \right) - 4\sqrt {\left( {k - 4\omega } \right)\omega \left( { - \left( {1 - \alpha } \right)^{2} + k\left( {1 - \alpha } \right) + 3k\omega } \right)} }}{{\left( {k + 12\omega } \right)\left( {k - 4\omega } \right)}}\), \(M > N\); when \(\gamma > \frac{{ - \left( {\left( {1 - \alpha } \right) + 6\omega } \right)\left( {k - 4\omega } \right) - 4\sqrt {\left( {k - 4\omega } \right)\omega \left( { - \left( {1 - \alpha } \right)^{2} + k\left( {1 - \alpha } \right) + 3k\omega } \right)} }}{{\left( {k + 12\omega } \right)\left( {k - 4\omega } \right)}}\),\(M < N\);

  • (4) if \(\left( {k - 4\omega } \right) < 0\) and \(\left( {1 - \alpha - 6\omega } \right) \le 0\), we have \(k < 4\omega\) and \(\omega \ge \frac{{1 - \alpha }}{6}\). Under this condition, \(M < N\).

In summary, according to the above results, we can get that.

  • (1) if \(k \ge 4\omega\) and \(\omega < \frac{{1 - \alpha }}{6}\), we have \(\frac{{\partial n^{F} }}{{\partial \gamma }} > 0\);

  • (2) if \(k \ge 4\omega\) and \(\omega > \frac{{1 - \alpha }}{6}\), then when \(\gamma > \gamma _{1}\), \(\frac{{\partial n^{F} }}{{\partial \gamma }} > 0\); and when \(\gamma < \gamma _{1}\), \(\frac{{\partial n^{F} }}{{\partial \gamma }} < 0\);

  • (3) if \(k < 4\omega\) and \(\omega < \frac{{1 - \alpha }}{6}\), then when \(\gamma < \gamma _{2}\), \(\frac{{\partial n^{F} }}{{\partial \gamma }} > 0\); and when \(\gamma > \gamma _{2}\),\(\frac{{\partial n^{F} }}{{\partial \gamma }} < 0\);

  • (4) if \(k < 4\omega\) and \(\omega \ge \frac{{1 - \alpha }}{6}\), we have \(\frac{{\partial n^{F} }}{{\partial \gamma }} < 0\).

Here, \(\gamma _{1} = \frac{{ - \left( {\left( {1 - \alpha } \right) + 6\omega } \right)\left( {k - 4\omega } \right) + 4\sqrt {\left( {k - 4\omega } \right)\omega \left( { - \left( {1 - \alpha } \right)^{2} + k\left( {1 - \alpha } \right) + 3k\omega } \right)} }}{{\left( {k + 12\omega } \right)\left( {k - 4\omega } \right)}}\).and \(\gamma _{2} = \frac{{ - \left( {\left( {1 - \alpha } \right) + 6\omega } \right)\left( {k - 4\omega } \right) - 4\sqrt {\left( {k - 4\omega } \right)\omega \left( { - \left( {1 - \alpha } \right)^{2} + k\left( {1 - \alpha } \right) + 3k\omega } \right)} }}{{\left( {k + 12\omega } \right)\left( {k - 4\omega } \right)}}\).

Appendix C

Letting \(\sqrt {p^{{F*}} } - \sqrt {p^{{N*}} }\), we can get

$$ \sqrt {p^{{F*}} } - \sqrt {p^{{N*}} } = \frac{{\gamma k - \left( {1 - \alpha } \right) + \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } }}{{6\sqrt {\gamma \omega } }} $$
(A7)

Since \(\sqrt {p^{{F*}} } > 0\), \(p^{{F*}} > 0\),\(\sqrt {p^{{N*}} } > 0\) and \(p^{{N*}} > 0\), we can get that if \(\sqrt {p^{{F*}} } - \sqrt {p^{{N*}} } > 0\),\(p^{{F*}} > p^{{N*}}\).

Analyzing equation (A7), we can find that if \(\gamma k - \left( {1 - \alpha } \right) \ge 0\), \(\sqrt {p^{{F*}} } - \sqrt {p^{{N*}} } > 0\). If \(\gamma k - \left( {1 - \alpha } \right) < 0\), we further solving the following equation

$$ \Delta = - \left[ {\gamma k - \left( {1 - \alpha } \right)} \right]^{2} + \left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega $$
(A8)

Solving equation (A8), we can get the following equation

$$ \Delta = 4\gamma k\left( {1 - \alpha } \right) + 12\gamma \left( {1 + \gamma } \right)k\omega $$
(A9)

Clearly, \(\Delta > 0\) holds. Therefore, \(\sqrt {p^{{F*}} } - \sqrt {p^{{N*}} } > 0\) always holds.

Furthermore, we analyze the effects of privacy breach insurance compensation on price. Solving the first-order derivative of function \(p^{{F*}}\) with respect to, we can get

$$ \frac{{\partial p^{{F*}} }}{{\partial k}} = \frac{{\left( {\left( {1 - \alpha + \gamma k} \right) + \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } } \right)}}{{18\omega }}\left( {1 + \frac{{\left( {1 - \alpha + \gamma k} \right) + 6\left( {1 + \gamma } \right)\omega }}{{\sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } }}} \right) $$
(A10)

It is clearly that \(\frac{{\partial p^{{F*}} }}{{\partial k}} > 0\). Therefore, \(p^{{F*}}\) is increasing in \(k\).

Appendix D

The first-order derivation of function \(\pi ^{F}\) with respect to \(k\) is

$$ \frac{{\partial \pi ^{F} }}{{\partial k}} = \frac{{2\left[ {2\left( {1 + \gamma k} \right) + \alpha - \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } } \right]}}{{108\gamma \omega }}Z $$
(A11)

where

$$ Z = 3\gamma \left[ {\left( {1 + \gamma k} \right) + 2\alpha - 6\left( {1 + \gamma } \right)\omega + \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } } \right] $$
(A12)

Since \(\frac{{2\left[ {2\left( {1 + \gamma k} \right) + \alpha - \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } } \right]}}{{108\gamma \omega }} > 0\), we can get that if \(M > 0\),\(\frac{{\partial \pi ^{F} }}{{\partial k}} > 0\). Now we analyze equation (A11).

If \(\left( {1 + \gamma k} \right) + 2\alpha - 6\left( {1 + \gamma } \right)\omega \ge 0\), \(\frac{{\partial \pi ^{F} }}{{\partial k}} > 0\) holds. Solving \(\left( {1 + \gamma k} \right) + 2\alpha - 6\left( {1 + \gamma } \right)\omega \ge 0\), we can get the following results:

  • (1) if \(\omega \le \frac{{1 + 2\alpha }}{6}\) and \(\gamma \le \frac{{1 + 2\alpha }}{{6\omega }} - 1\), \(\left( {1 + \gamma k} \right) + 2\alpha - 6\left( {1 + \gamma } \right)\omega \ge 0\) holds;

  • (2) if 1)\(\omega \le \frac{{1 + 2\alpha }}{6}\) and \(\gamma > \frac{{1 + 2\alpha }}{{6\omega }} - 1\); or 2) \(\omega > \frac{{1 + 2\alpha }}{6}\), when \(k \ge - \frac{{1 + 2\alpha - 6\left( {1 + \gamma } \right)\omega }}{\gamma }\), \(\left( {1 + \gamma k} \right) + 2\alpha - 6\left( {1 + \gamma } \right)\omega \ge 0\) holds.

If \(\left( {1 + \gamma k} \right) + 2\alpha - 6\left( {1 + \gamma } \right)\omega < 0\), we can further let

$$ Z1 = - \left[ {\left( {1 + \gamma k} \right) + 2\alpha - 6\left( {1 + \gamma } \right)\omega } \right]^{2} + \left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega $$
(A13)

Since \(\left( {1 + \gamma k} \right) + 2\alpha - 6\left( {1 + \gamma } \right)\omega < 0\) and \(\sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } > 0\), we can get that if \(Z1 > 0\), \(Z > 0\) holds. Next, we analyze equation (A13). By solving the equation, we can get the following results:

  • (1)If \(\omega\) and \(\gamma\) satisfy the following conditions: 1)\(\frac{{1 + 2\alpha }}{6} < \omega \le \frac{{2 + \alpha }}{6}\) and \(\gamma \le \frac{{2 + \alpha }}{{6\omega }} - 1\); or 2) \(\omega \le \frac{{1 + 2\alpha }}{6}\) and \(\frac{{1 + 2\alpha }}{{6\omega }} - 1 < \gamma \le \frac{{2 + \alpha }}{{6\omega }} - 1\), then when \(k < - \frac{{1 + 2\alpha - 6\left( {1 + \gamma } \right)\omega }}{\gamma }\), \(Z1 > 0\);

  • (2) if \(\omega\) and \(\gamma\) satisfy the following conditions: 1) \(\omega > \frac{{2 + \alpha }}{6}\); or 2) \(\omega \le \frac{{2 + \alpha }}{6}\) and \(\gamma > \frac{{2 + \alpha }}{{6\omega }} - 1\), then when \(- \frac{{\left[ { - \alpha + 2\left( {1 + \gamma } \right)\omega } \right]\left[ {\left( {2 + \alpha } \right) - 6\left( {1 + \gamma } \right)\omega } \right]}}{{2\gamma \left[ { - \alpha + 4\left( {1 + \gamma } \right)\omega } \right]}} < k < - \frac{{1 + 2\alpha - 6\left( {1 + \gamma } \right)\omega }}{\gamma }\), \(Z1 > 0\); and when \(k < - \frac{{\left[ { - \alpha + 2\left( {1 + \gamma } \right)\omega } \right]\left[ {\left( {2 + \alpha } \right) - 6\left( {1 + \gamma } \right)\omega } \right]}}{{2\gamma \left[ { - \alpha + 4\left( {1 + \gamma } \right)\omega } \right]}}\), \(Z1 < 0\).

In summary, according to the above results, we can get that.

  • (1) if \(\omega \le \frac{{1 + 2\alpha }}{6}\) and \(\gamma \le \frac{{1 + 2\alpha }}{{6\omega }} - 1\), we can get \(\frac{{\partial \pi ^{F} }}{{\partial k}} > 0\);

  • (2) if \(\frac{{1 + 2\alpha }}{6} < \omega \le \frac{{2 + \alpha }}{6}\) and \(\gamma \le \frac{{2 + \alpha }}{{6\omega }} - 1\), we can get \(\frac{{\partial \pi ^{F} }}{{\partial k}} > 0\);

  • (3) if \(\omega \le \frac{{1 + 2\alpha }}{6}\) and \(\frac{{1 + 2\alpha }}{{6\omega }} - 1 < \gamma \le \frac{{2 + \alpha }}{{6\omega }} - 1\), we can get \(\frac{{\partial \pi ^{F} }}{{\partial k}} > 0\);

  • (4) if 1)\(\omega > \frac{{2 + \alpha }}{6}\); or 2) \(\omega \le \frac{{2 + \alpha }}{6}\) and \(\gamma > \frac{{2 + \alpha }}{{6\omega }} - 1\), we can get that.

    • 1)when \(k > - \frac{{\left[ { - \alpha + 2\left( {1 + \gamma } \right)\omega } \right]\left[ {\left( {2 + \alpha } \right) - 6\left( {1 + \gamma } \right)\omega } \right]}}{{2\gamma \left[ { - \alpha + 4\left( {1 + \gamma } \right)\omega } \right]}}\),\(\frac{{\partial \pi ^{F} }}{{\partial k}} > 0\);

    • 2)when \(k < - \frac{{\left[ { - \alpha + 2\left( {1 + \gamma } \right)\omega } \right]\left[ {\left( {2 + \alpha } \right) - 6\left( {1 + \gamma } \right)\omega } \right]}}{{2\gamma \left[ { - \alpha + 4\left( {1 + \gamma } \right)\omega } \right]}}\),\(\frac{{\partial \pi ^{F} }}{{\partial k}} < 0\).

Appendix E

(1) Equilibriums when the firm not providing privacy breach insurance.

Privacy information provision. In the fourth stage, we consider how much privacy consumers will disclose to the firm. Given firm’s product price \(p^{N}\), the consumer maximizes his/her utility which implying the optimal privacy provision

$$ y^{N} = \frac{v}{{2\gamma \omega }} $$
(A14)

Participate Decision. In the third stage, consumers decide whether to participate in the market. The consumer participates in the market if

$$ vy^{N} - \omega \gamma \left( {y^{N} } \right)^{2} - p^{N} \ge 0 $$
(A15)

Based on equation (A14) and equation (A15), and given firm’s product price \(p^{N}\), we can derive consumers participate when

$$ v \ge \sqrt {4\gamma \omega p^{N} } $$
(A16)

and as a result, the number of participating is

$$ n^{N} = 1 - \sqrt {4\gamma \omega p^{N} } $$
(A17)

Product price. In the second stage, the firm maximizes its profit by setting the product price. The first-order of derivative of function \(\pi ^{N}\) with respect to \(p^{N}\) is.

$$ \frac{{\partial \pi ^{N} }}{{\partial p^{N} }} = 1 - \alpha - 3\sqrt {\omega \gamma } \left( {p^{N} } \right)^{{\frac{1}{2}}} + \gamma c\sqrt {\gamma \omega } \left( {p^{N} } \right)^{{ - \frac{1}{2}}} $$
(A18)

Letting \(\frac{{\partial \pi ^{N} }}{{\partial p^{N} }} = 0\), we derive the equilibrium product price as

$$ p^{{N*}} = \frac{{\left( {1 - \alpha + \sqrt {\left( {1 - \alpha } \right)^{2} + 12\gamma ^{2} \omega c} } \right)^{2} }}{{36\gamma \omega }} $$
(A19)

According the equilibrium product price, we can further get the equilibrium number of consumers in the market as follows

$$ n^{N} = 1 - \frac{{1 - \alpha + \sqrt {\left( {1 - \alpha } \right)^{2} + 12\gamma ^{2} \omega c} }}{{\text{3}}} $$
(A20)

(2) Equilibriums when the firm providing privacy breach insurance.

Privacy information provision. In the fourth stage, we consider the decision problem that a consumer decides how much privacy he/she will disclose to the firm. The consumer maximizes his/her utility, given the firm’s product price \(p^{F}\). We can derive that the privacy provision is

$$ y^{F} = \frac{{v + \gamma k}}{{2\gamma \omega }} $$
(A21)

Participate Decision. In the third stage, consumers decide whether to participate in the market. The consumer can get a utility of zero when existing the market, implying it participates in the market if

$$ vy^{F} - \omega \gamma \left( {y^{F} } \right)^{2} - p^{F} + \gamma y^{F} k \ge 0 $$
(A22)

Based on equation (a21) and equation (a22), and given firm’s product price \(p^{F}\), we can find consumers participates when

$$ v \ge \sqrt {4\gamma \omega p^{F} } - \gamma k $$
(A23)

implying the number of participating consumers

$$ n^{F} = 1 - \sqrt {4\gamma \omega p^{F} } + \gamma k $$
(A24)

Product price. In the second stage, the firm maximizes its profit by setting the product price. The first-order of derivative of function \(\pi ^{F}\) with respect to \(p^{F}\) is

$$ \frac{{\partial \pi ^{F} }}{{\partial p^{F} }} = 1 - \alpha - 3\sqrt {\gamma \omega p^{F} } + \gamma k + \left( {\left( {1 + \gamma } \right)k + \gamma c} \right)\sqrt {\gamma \omega } \left( {p^{F} } \right)^{{ - 1/2}} $$
(A25)

Letting \(\frac{{\partial \pi ^{F} }}{{\partial p^{F} }} = 0\), we derive the equilibrium product price as

$$ p^{{F*}} = \frac{{\left( {1 - \alpha + \gamma k + \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {\left( {1 + \gamma } \right)k + \gamma c} \right)\omega } } \right)^{2} }}{{36\gamma \omega }} $$
(A26)

According to the equilibrium product price, we can further get the equilibrium number of consumers in the market

$$ n^{F} = \frac{{2\left( {1 + \gamma k} \right) + \alpha - \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {\left( {1 + \gamma } \right)k + \gamma c} \right)\omega } }}{3} $$
(A27)

Appendix F

Comparing the profits in the two scenarios, we can get

$$ \begin{gathered} \pi ^{F} - \pi ^{N} = \frac{{\left[ {2\left( {1 + \gamma k + \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } } \right) + \alpha } \right]\left[ {2\left( {1 + \gamma k} \right) + \alpha - \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } } \right]^{2} }}{{108\gamma \omega }} \hfill \\ \begin{array}{*{20}c} {\begin{array}{*{20}c} {} & {} \\ \end{array} } & {} \\ \end{array} - \frac{{\left( { - \alpha + 4} \right)\left( {2\alpha + 1} \right)^{2} }}{{108\gamma \omega }} \hfill \\ \end{gathered} $$
(A28)

For \(0 \le n^{F} = \frac{{2\left( {1 + \gamma k} \right) + \alpha - \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } }}{3} \le 1\), we can get that \(2\left( {1 + \gamma k} \right) + \alpha \ge \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega }\) and \(2\left( {1 + \gamma k} \right) + \alpha - 3 \le \sqrt {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega }\).

Hence, we can get

$$ \pi ^{F} - \pi ^{N} \le \frac{1}{{108\gamma \omega }}\left\{ \begin{gathered} \left[ {2\left( {1 + \gamma k} \right) + \alpha } \right]^{3} - \left( {2\left( {1 + \gamma k} \right) + \alpha } \right)\left[ {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } \right] \hfill \\ - \left( { - \alpha + 4} \right)\left( {2\alpha + 1} \right)^{2} \hfill \\ \end{gathered} \right\} $$
(A29)

and

$$ \pi ^{F} - \pi ^{N} \ge \frac{1}{{108\gamma \omega }}\left\{ \begin{gathered} \left[ {2\left( {1 + \gamma k} \right) + \alpha } \right]^{3} + \left[ {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } \right]\left[ { - \left( {2\left( {1 + \gamma k} \right) + \alpha } \right) - 6} \right] \hfill \\ - \left( { - \alpha + 4} \right)\left( {2\alpha + 1} \right)^{2} \hfill \\ \end{gathered} \right\} $$
(A30)

Analyzing equation (A29), we can get that if

$$ \left[ {2\left( {1 + \gamma k} \right) + \alpha } \right]^{3} - \left( {2\left( {1 + \gamma k} \right) + \alpha } \right)\left[ {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } \right] - \left( { - \alpha + 4} \right)\left( {2\alpha + 1} \right)^{2} < 0 $$
(A31)

then \(\pi ^{F} < \pi ^{N}\) holds. Here, we can easily get that

$$ \left[ {2\left( {1 + \gamma k} \right) + \alpha } \right]^{3} - \left( {2\left( {1 + \gamma k} \right) + \alpha } \right)\left( {1 - \alpha + \gamma k} \right)^{2} - \left( { - \alpha + 4} \right)\left( {2\alpha + 1} \right)^{2} > 0 $$
(A32)

Based on equation (A32) and solving equation (A31), we can get the following results:

$$ \omega > \frac{{3\left( {1 + \gamma k} \right)\left( {2\left( {1 + \gamma k} \right) + \alpha } \right)\left( {1 + \gamma k + 2\alpha } \right) - \left( { - \alpha + 4} \right)\left( {2\alpha + 1} \right)^{2} }}{{12\gamma \left( {1 + \gamma } \right)k\left( {2\left( {1 + \gamma k} \right) + \alpha } \right)}}: = \omega _{H} $$

Analyzing equation (A30), we can get that if

$$ \left[ {2\left( {1 + \gamma k} \right) + \alpha } \right]^{3} + \left[ {\left( {1 - \alpha + \gamma k} \right)^{2} + 12\gamma \left( {1 + \gamma } \right)k\omega } \right]\left[ { - \left( {2\left( {1 + \gamma k} \right) + \alpha } \right) - 6} \right] - \left( { - \alpha + 4} \right)\left( {2\alpha + 1} \right)^{2} > 0 $$
(A33)

then \(\pi ^{F} > \pi ^{N}\) holds.

Solving equation (A33), we can get when.

$$ \omega < \frac{{3\left( {1 + \gamma k} \right)\left( {2\left( {1 + \gamma k} \right) + \alpha } \right)\left( {1 + \gamma k + 2\alpha } \right) - 6\left( {1 - \alpha + \gamma k} \right)^{2} - \left( { - \alpha + 4} \right)\left( {2\alpha + 1} \right)^{2} }}{{12\gamma \left( {1 + \gamma } \right)k\left[ {\left( {2\left( {1 + \gamma k} \right) + \alpha } \right) + 6} \right]}}: = \omega _{L} $$

equation (A33) holds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Mei, S., Zhong, W. et al. Managing consumer privacy risk: The effects of privacy breach insurance. Electron Commer Res 23, 807–841 (2023). https://doi.org/10.1007/s10660-021-09492-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-021-09492-x

Keywords

Navigation