Skip to main content

Advertisement

Log in

Phasor estimation in power transmission lines by using the Kalman filter

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper develops a Kalman filter-based method to estimate the magnitude and phases of currents and voltages of a single-phase transmission line. Unlike common-place practices, in which phasors are estimated by using Fourier-based or least squares methods, the standard Kalman filter algorithm is used. We represent the transmission line by using a steady-state model in which the phasors of voltages and currents are considered to be in the complex \(d - q\) domain. We then show the estimation performance of the filter-based estimator by means of a numerical simulation of a medium-length transmission line and compare the proposed method to standard methods for phasor estimation. The results presented show that the filter is highly efficient and encourages future research on the estimation of the electric parameters of transmission lines by using the proposed method. We conclude the paper by reasoning that the proposed estimation method could be used in phasor measurement devices for improved monitoring and control capabilities of electrical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neyestanaki MK, Ranjbar A (2015) An adaptive pmu-based wide area backup protection scheme for power transmission lines. IEEE Trans Smart Grid 6(3):1550–1559

    Article  Google Scholar 

  2. Asprou M, Kyriakides E, ”Estimation of transmission line parameters using pmu measurements, ”in, (2015) IEEE Power & Energy Society General Meeting. IEEE 2015:1–5

  3. Ritzmann D, Wright PS, Holderbaum W, Potter B (2016) A method for accurate transmission line impedance parameter estimation. IEEE Trans Instrum Measurement 65(10):2204–2213

    Article  Google Scholar 

  4. Al-Othman AK, El-Naggar KM, AlSharidah ME (2016) On-line estimation of transmission line parameters using synchronized measurements. Electric Power Componen Syst 44(2):233–239

    Article  Google Scholar 

  5. Ren P, Lev-Ari H, Abur A (2017) Tracking three-phase untransposed transmission line parameters using synchronized measurements. IEEE Trans Power Syst 33(4):4155–4163

    Article  Google Scholar 

  6. Sobrinho ASF, Flauzino RA, Liboni LHB, Costa ECM (2018) Proposal of a fuzzy-based pmu for detection and classification of disturbances in power distribution networks. Int J Electric Power Energy Syst 94:27–40

    Article  Google Scholar 

  7. Da Costa ECM, Kurokawa S, Shinoda AA, Pissolato J (2013) Digital filtering of oscillations intrinsic to transmission line modeling based on lumped parameters. Int J Electr Power Energy Syst 44(1):908–915

    Article  Google Scholar 

  8. Caballero PT, Costa ECM, Kurokawa S (2016) Frequency-dependent line model in the time domain for simulation of fast and impulsive transients. Int J Electric Power Energy Syst 80:179–189

    Article  Google Scholar 

  9. Costa ECM, Kurokawa S (2015) Estimation of transmission line parameters using multiple methods. IET Gener, Trans Dis 9(16):2617–2624

    Article  Google Scholar 

  10. Ren P, Abur A, Lev-Ari H, ”Tracking transmission line parameters in power grids observed by pmus,” in, (2019) IEEE Milan PowerTech. IEEE 2019:1–6

  11. Y. Guo, K. Li, and X. Liu, “Fault diagnosis for power system transmission line based on pca and svms,” in International Conference on Intelligent Computing for Sustainable Energy and Environment.Springer, 2012, pp. 524–532

  12. Deokar S, Waghmare L (2014) Integrated dwt-fft approach for detection and classification of power quality disturbances. Int J Electr Power Energy Syst 61:594–605

    Article  Google Scholar 

  13. Martin KE (2015) Synchrophasor measurements under the ieee standard c37. 118.1-2011 with amendment c37. 118.1 a. IEEE Trans Power Deliv 30(3):1514–1522

    Article  Google Scholar 

  14. Khalili A, Rastegarnia A, Sanei S (2015) Robust frequency estimation in three-phase power systems using correntropy-based adaptive filter. IET Sci, Measurement Technol 9(8):928–935

    Article  Google Scholar 

  15. A. T. Phan, G. Hermann, and P. Wira, “Kalman filtering with a new state-space model for three-phase systems: application to the identification of symmetrical components,” in 2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS).IEEE, 2015, pp. 1–6

  16. Zečević Ž, Krstajić B, Popović T (2016) Improved frequency estimation in unbalanced three-phase power system using coupled orthogonal constant modulus algorithm. IEEE Transactions on Power Delivery 32(4):1809–1816

    Article  Google Scholar 

  17. Schulze R, Schegner P, Zivanovic R (2011) Parameter identification of unsymmetrical transmission lines using fault records obtained from protective relays. IEEE Trans Power Deliv 26(2):1265–1272

    Article  Google Scholar 

  18. Albuquerque FP, Costa ECM, Liboni LH, Pereira RFR, de Oliveira MC (2021) Estimation of transmission line parameters by using two least-squares methods. IET Gener Trans Dis 15(3):568–575

    Article  Google Scholar 

  19. Kamwa I, Samantaray S, Joos G (2013) Wide frequency range adaptive phasor and frequency pmu algorithms. IEEE Trans Smart Grid 5(2):569–579

    Article  Google Scholar 

  20. B. D. Anderson and J. B. Moore, Optimal filtering.Courier Corporation, 2012

  21. H. Darvish and X. Wang, “Synchronization of unbalanced three phase voltages with nonlinear estimation,” in 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT).IEEE, 2015, pp. 1–5

  22. Bendjabeur A, Kouadri A, Mekhilef S (2021) Transmission line fault location by solving line differential equations. Electric Power Systems Research 192:106912

  23. Liboni LH, de Oliveira MC, da Silva IN (2020) Optimal kalman estimation of symmetrical sequence components. IEEE Trans Instrument Measurement 69(11):8844–8852

    Article  Google Scholar 

  24. Khodaparast J, Khederzadeh M (2017) Least square and kalman based methods for dynamic phasor estimation: a review. Protect Control of Modern Power Syst 2(1):1–18

    Article  Google Scholar 

  25. Y. Amirat, Z. Oubrahim, H. Ahmed, M. Benbouzid, and T. Wang, “Phasor estimation for grid power monitoring: Least square vs. linear kalman filter,” Energies, vol. 13, no. 10, p. 2456, 2020

  26. Liboni LH, Flauzino RA, da Silva IN, Costa ECM, Suetake M (2016) Efficient signal processing technique for information extraction and its applications in power systems. Electric Power Syst Re 141:538–548

    Article  Google Scholar 

  27. Liboni LHB, da Silva IN, de Oliveira MC, ”Best modeling practices for optimal estimation of balanced and symmetric three-phase signals,” in, (2017) IEEE Power & Energy Society General Meeting. IEEE 2017:1–5

  28. Stevenson WD (1975) Element of power Syst. Analysis, McGraw

    Google Scholar 

  29. Liboni LHB, de Oliveira MC, da Silva IN (2017) On the problem of optimal estimation of balanced and symmetric three-phase signals. International Journal of Electrical Power & Energy Systems 91:155–165

    Article  Google Scholar 

  30. L. Ljung, System identification toolbox: User’s guide.Citeseer, 1995

  31. Brown M, Biswal M, Brahma S, Ranade SJ, Cao H ”Characterizing and quantifying noise in pmu data, ” in, (2016) IEEE Power and Energy Society General Meeting (PESGM). IEEE 2016:1–5

  32. Shi D, Tylavsky DJ, Logic N (2012) An adaptive method for detection and correction of errors in pmu measurements. IEEE Trans Smart Grid 3(4):1575–1583

  33. Kang N, Liao Y ”Equivalent pi circuit for zero-sequence double circuit transmission lines, ” in, (2012) IEEE Power and Energy Society General Meeting. IEEE 2012:1–6

Download references

Acknowledgements

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, National Council for Scientific and Technological Development—CNPq (Grant 408681/2016-0), and São Paulo Research Foundation—FAPESP (Grant 2019/05381-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo F. R. Pereira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Initial data to performed Kalman method

A Initial data to performed Kalman method

Measurement noise covariance:

$$\begin{aligned} \Sigma _r = \begin{pmatrix} 0.34 &{} . &{} . &{} . \\ . &{} 1155 &{} . &{} . \\ . &{} . &{} 0.34 &{} . \\ . &{} . &{} . &{} 1155 \end{pmatrix}_{4x4}. \end{aligned}$$

Process covariance:

$$\begin{aligned} \epsilon = \begin{pmatrix} 10^{-8} &{} \ldots . \\ \vdots &{} \ddots &{} \vdots \\ . &{} \ldots &{} 10^{-8} \end{pmatrix}_{8x8}. \end{aligned}$$

Initial state mean:

$$\begin{aligned} x_0 = \begin{bmatrix} 1000&1000&\ldots&1000&1000 \end{bmatrix}^{T}_{8x1}. \end{aligned}$$

Initial error covariance:

$$\begin{aligned} \Sigma _0 = \begin{pmatrix} 0.05 &{} \ldots . \\ \vdots &{} \ddots &{} \vdots \\ . &{} \ldots &{} 0.05 \end{pmatrix}_{8x8}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, R.F.R., Albuquerque, F.P., Liboni, L.H.B. et al. Phasor estimation in power transmission lines by using the Kalman filter. Electr Eng 104, 991–1000 (2022). https://doi.org/10.1007/s00202-021-01359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01359-6

Keywords

Navigation