Skip to main content

Advertisement

Log in

A memetic algorithm to address the multi-node resource-constrained project scheduling problem

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

The multi-mode resource-constrained project scheduling problem (MRCPSP) is a very general scheduling model. The MRCPSP covers problems where activities can be executed in several ways or modes, and is affected by parameters such as their duration, temporary relationships with other activities, and renewable and non-renewable resource requirements. The objective of the MRCPSP is to select a combination of time/resources to minimize the duration of the project and complete all activities while satisfying all resource constraints and precedence relationships. Here, we describe a memetic algorithm to solve the MRCPSP. This algorithm uses the components of genetic algorithms and variable neighborhoods search to implement (1) an adaptation of the uniform crossover operator, and (2) a local search to assess agents’ performance that appropriately guides the evolution of the algorithm and hence generate better solutions. We implement a metaheuristic strategy and compare its performance for solving different instances of the standard PSPLIB and MMLIB libraries. Overall, our memetic algorithm provides suitable solutions for the MRCPSP and shows outstanding performance in all tested instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcaraz, J., Maroto, C., & Ruiz, R. (2003). Solving the multi-mode resource-constrained project scheduling problem with genetic algorithms. Journal of the Operational Research Society, 54(6), 614–626.

    Article  Google Scholar 

  • Asta, S., Karapetyan, D., Kheiri, A., Özcan, E., & Parkes, A. J. (2015). Combining Monte-Carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-project scheduling problem. Information Sciences, 373, 476–498.

    Article  Google Scholar 

  • Barrios, A., Ballestin, F., & Valls, V. (2011). A double genetic algorithm for the mrcpsp/max. Computers & Operations Research, 38(1), 33–43.

    Article  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal statistical society: Series B (Methodological), 57(1), 289–300.

    Google Scholar 

  • Blazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Mathematics, 5(1), 11–24.

    Article  Google Scholar 

  • Boctor, F. F. (1993). Heuristics for scheduling projects with resource restrictions and several resource-duration modes. The International Journal of Production Research, 31(11), 2547–2558.

    Article  Google Scholar 

  • Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operational Research, 149(2), 268–281.

    Article  Google Scholar 

  • Chakrabortty, R. K., Abbasi, A., & Ryan, M. J. (2020). Multi-mode resource-constrained project scheduling using modified variable neighborhood search heuristic. International Transactions in Operational Research, 27(1), 138–167.

    Article  Google Scholar 

  • Chen, A. H. L., Liang, Y. C., & Padilla, J. D. (2014). An entropy-based upper bound methodology for robust predictive multi-mode RCPSP schedules. Entropy, 16(9), 5032–5067.

    Article  Google Scholar 

  • Chen, R. M., & Wang, C. M. (2013). Controlling search using an s decreasing constriction factor for solving multi-mode scheduling problems. In International conference on industrial, engineering and other applications of applied intelligent systems (pp. 545–555). Springer.

  • Chen, W., Shi, Y.-J., Teng, H.-F., Lan, X.-P., & Hu, L.-C. (2010). An efficient hybrid algorithm for resource-constrained project scheduling. Information Sciences, 180(6), 1031–1039.

    Article  Google Scholar 

  • Chiang, C.-W., & Huang, Y.-Q. (2012). Multi-mode resource-constrained project scheduling by ant colony optimization with a dynamic tournament strategy. In 2012 Third international conference on innovations in bio-inspired computing and applications (pp. 110–115). IEEE.

  • Chiang, C.-W., Huang, Y.-Q., & Wang, W.-Y. (2008). Ant colony optimization with parameter adaptation for multi-mode resource-constrained project scheduling. Journal of Intelligent & Fuzzy Systems, 19(4,5), 345–358.

    Google Scholar 

  • Christofides, N., Alvarez-Valdes, R., & Tamarit, J. (1987). Project scheduling with resource constraints: A branch and bound approach. European Journal of Operational Research, 29(3), 262–273.

    Article  Google Scholar 

  • Coelho, J., & Vanhoucke, M. (2011). Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers. European Journal of Operational Research, 213(1), 73–82.

    Article  Google Scholar 

  • Cui, J., & Yu, L. (2014). An efficient discrete particle swarm optimization for solving multi-mode resource-constrained project scheduling problem. In Ieee (pp. 858–862).

  • Damak, N., Jarboui, B., Siarry, P., & Loukil, T. (2009). Differential evolution for solving multi-mode resource-constrained project scheduling problems. Computers & Operations Research, 36(9), 2653–2659.

    Article  Google Scholar 

  • De Reyck, B., et al. (1998). A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 111(1), 152–174.

    Article  Google Scholar 

  • Demeulemeester, E. L., Herroelen, W., & Herroelen, W. S. (2002). Project scheduling: A research handbook (Vol. 49). Berlin: Springer.

    Google Scholar 

  • Elloumi, S., & Fortemps, P. (2010). A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 205(1), 31–41.

    Article  Google Scholar 

  • Geiger, M. J. (2017). A multi-threaded local search algorithm and computer implementation for the multi-mode, resource-constrained multi-project scheduling problem. European Journal of Operational Research, 256(3), 729–741.

    Article  Google Scholar 

  • Gomes, H. C., dos Neves, F. D. A., & Souza, M. J. F. (2014). Multi-objective metaheuristic algorithms for the resource-constrained project scheduling problem with precedence relations. Computers & Operations Research, 44, 92–104.

    Article  Google Scholar 

  • Hansen, P., Mladenovic, N., Brimberg, J., & Pérez, J. A. (2010). Variable neighborhood search. Handbook of metaheuristics, Volume 146 of International series in operations research \$&\$ management science (pp. 61–86). Springer.

  • Hartmann, S. (1999). Project scheduling under limited resources: Models, methods, and applications (Vol. 478)., Lecture notes in economics and mathematical systems Berlin: Springer.

    Book  Google Scholar 

  • Hartmann, S. (2001). Project scheduling with multiple modes: A genetic algorithm. Annals of Operations Research, 102(1–4), 111–135.

    Article  Google Scholar 

  • Herroelen, W., Demeulemeester, E., & Reyck, B. (1999). A classification scheme for project scheduling. Project Scheduling, 14(9727), 1–26.

    Google Scholar 

  • Jarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008). A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation, 195(1), 299–308.

    Article  Google Scholar 

  • Jędrzejowicz, P., & Ratajczak-Ropel, E. (2015). Reinforcement learning strategy for solving the MRCPSP by a team of agents. In R. Neves-Silva, L. C. Jain, & R. J. Howlett (Eds.), Intelligent decision technologies (pp. 537–548). Springer.

  • Jozefowska, J., Mika, M., R’ozycki, R., Waligóra, G., & Weglarz, J. (2001). Simulated annealing for multi-mode resource-constrained project scheduling. Annals of Operations Research, 102(1–4), 137–155.

    Article  Google Scholar 

  • Kolisch, R. (1996). Efficient priority rules for the resource-constrained project scheduling problem. Journal of Operations Management, 14(3), 179–192.

    Article  Google Scholar 

  • Kolisch, R. (2013). Project scheduling under resource constraints: Efficient heuristics for several problem classes. Berlin: Springer.

    Google Scholar 

  • Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for the resource-constrained project scheduling problem: Classification and computational analysis. In Project scheduling. International series in operations research & management science (Vol. 14, pp. 147–178). Springer.

  • Kolisch, R., & Sprecher, A. (1996). Psplib—A project scheduling problem library. European Journal of Operational Research, 96(1), 205–216.

    Article  Google Scholar 

  • Koulinas, G., Kotsikas, L., & Anagnostopoulos, K. (2014). A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem. Information Sciences, 277, 680–693.

    Article  Google Scholar 

  • Li, H., & Zhang, H. (2013). Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints. Automation in Construction, 35, 431–438.

    Article  Google Scholar 

  • Lova, A., Tormos, P., Cervantes, M., & Barber, F. (2009). An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. International Journal of Production Economics, 117(2), 302–316.

    Article  Google Scholar 

  • Mingozzi, A., Maniezzo, V., Ricciardelli, S., & Bianco, L. (1998). An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Management Science, 44(5), 714–729.

    Article  Google Scholar 

  • Mirzaei, O., & Akbarzadeh-T, M.-R. (2013). A novel learning algorithm based on a multi-agent structure for solving multi-mode resource-constrained project scheduling problem. Journal of Convergence, 4(1), 47–52.

    Google Scholar 

  • Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Pasadena, California, USA: California Institute of Technology.

  • Muritiba, A. E. F., Rodrigues, C. D., & da Costa, F. A. (2018). A path-relinking algorithm for the multi-mode resource-constrained project scheduling problem. Computers & Operations Research, 92, 145–154.

    Article  Google Scholar 

  • Neumann, K., Schwindt, C., & Zimmermann, J. (2012). Project scheduling with time windows and scarce resources: Temporal and resource-constrained project scheduling with regular and nonregular objective functions. Berlin: Springer.

    Google Scholar 

  • Nonobe, K., & Ibaraki, T. (2002). Formulation and tabu search algorithm for the resource constrained project scheduling problem. Operation research/computer science interfaces series, volume 15 of Operations research/computer science interfaces series (pp. 557–588). Springer.

  • Pritsker, A. A. B., Waiters, L. J., & Wolfe, P. M. (1969). Multiproject scheduling with limited resources: A zero-one programming approach. Management Science, 16(1), 93–108.

    Article  Google Scholar 

  • Ranjbar, M., De Reyck, B., & Kianfar, F. (2009). A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling. European Journal of Operational Research, 193(1), 35–48.

    Article  Google Scholar 

  • Sebt, M. H., Afshar, M. R., & Alipouri, Y. (2015). An efficient genetic algorithm for solving the multi-mode resource-constrained project scheduling problem based on random key representation. International Journal of Supply and Operations Management, 2(3), 905–924.

    Google Scholar 

  • Sebt, M. H., Afshar, M. R., & Alipouri, Y. (2016). Hybridization of genetic algorithm and fully informed particle swarm for solving the multi-mode resource-constrained project scheduling problem. Engineering Optimization, 49, 513–530.

    Article  Google Scholar 

  • Sebt, M. H., Alipouri, Y., & Alipouri, Y. (2013). Solving resource-constrained project scheduling problem with evolutionary programming. Journal of the Operational Research Society, 64(9), 1327–1335.

    Article  Google Scholar 

  • Shen, H., & Li, X. (2013). Cooperative discrete particle swarms for multi-mode resource-constrained projects. In Proceedings of the 2013 IEEE 17th international conference on computer supported cooperative work in design, CSCWD 2013 (pp. 31–36).

  • Soliman, O. S., & Elgendi, E. A. R. (2014). A hybrid estimation of distribution algorithm with random walk local search for multi-mode resource-constrained project scheduling problems. arXiv:1402.5645.

  • Talbot, F. B. (1982). Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive case. Management Science, 28(10), 1197–1210.

    Article  Google Scholar 

  • Tormos, P., & Lova, A. (2001). A competitive heuristic solution technique for resource-constrained project scheduling. Annals of Operations Research, 102(1–4), 65–81.

    Article  Google Scholar 

  • Tseng, L.-Y., & Chen, S.-C. (2009). Two-phase genetic local search algorithm for the multimode resource-constrained project scheduling problem. IEEE Transactions on Evolutionary Computation, 13(4), 848–857.

    Article  Google Scholar 

  • Valdes, R. A., & Goerlich, J. T. (1993). The project scheduling polyhedron: Dimension, facets and lifting theorems. European Journal of Operational Research, 67(2), 204–220.

    Article  Google Scholar 

  • Valls, V., Laguna, M., Lino, P., Pérez, A., & Quintanilla, S. (1999). Project scheduling with stochastic activity interruptions. In J. Węglarz (Ed.), Project scheduling: Recent models, algorithms and applications (pp. 333–353). Boston, MA: Springer.

  • Van Peteghem, V., & Vanhoucke, M. (2009). An artificial immune system for the multi-mode resource-constrained project scheduling problem. In European conference on evolutionary computation in combinatorial optimization (pp. 85–96).

  • Van Peteghem, V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 201(2), 409–418.

    Article  Google Scholar 

  • Van Peteghem, V., & Vanhoucke, M. (2011). Using resource scarceness characteristics to solve the multi-mode resource-constrained project scheduling problem. Journal of Heuristics, 17(6), 705–728.

    Article  Google Scholar 

  • Van Peteghem, V., & Vanhoucke, M. (2014). An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances. European Journal of Operational Research, 235(1), 62–72.

    Article  Google Scholar 

  • Vartouni, A. M., & Khanli, L. M. (2014). A hybrid genetic algorithm and fuzzy set applied to multi-mode resource-constrained project scheduling problem. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 26(3), 1103–1112.

    Article  Google Scholar 

  • Wang, L., & Fang, C. (2011). An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem. Information Sciences, 181(20), 4804–4822.

    Article  Google Scholar 

  • Wang, L., & Fang, C. (2012). An effective estimation of distribution algorithm for the multi-mode resource-constrained project scheduling problem. Computers & Operations Research, 39(2), 449–460.

    Article  Google Scholar 

  • Wang, L., Liu, J., & Zhou, M. (2014). An organizational cooperative coevolutionary algorithm for multimode resource-constrained project scheduling problems. In Asia-Pacific conference on simulated evolution and learning (pp. 680–690).

  • Weglarz, J., Józefowska, J., Mika, M., & Waligóra, G. (2011). Project scheduling with finite or infinite number of activity processing modes: A survey. European Journal of Operational Research, 208(3), 177–205.

    Article  Google Scholar 

  • Zaman, F., Elsayed, S., Sarker, R., & Essam, D. (2020). Hybrid evolutionary algorithm for large-scale project scheduling problems. Computers & Industrial Engineering, 146, 106567.

    Article  Google Scholar 

  • Zhang, H. (2011). Ant colony optimization for multimode resource-constrained project scheduling. Journal of Management in Engineering, 28(2), 150–159.

    Article  Google Scholar 

  • Zhang, H., Tam, C. M., & Li, H. (2006). Multimode project scheduling based on particle swarm optimization. Computer-Aided Civil and Infrastructure Engineering, 21(2), 93–103.

    Article  Google Scholar 

  • Zhang, L., Luo, Y., & Zhang, Y. (2015). Hybrid particle swarm and differential evolution algorithm for solving multimode resource-constrained project scheduling problem. Journal of Control Science and Engineering,. https://doi.org/10.1155/2015/923791.

    Article  Google Scholar 

Download references

Acknowledgements

LFM-D was supported by the Colombian Agency for Research and Development (COLCIENCIAS), contract FP44842-068-2018, and receive a Ph.D. scholarship from Universidad del Norte, Barranquilla, Colombia. LFM-D is a doctoral student at Universidad del Norte. Some of this work is to be presented to the Ph.D. program in partial fulfillment of the requirements for the Ph.D. degree. The sponsor of the study has no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. Machado-Domínguez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado-Domínguez, L.F., Paternina-Arboleda, C.D., Vélez, J.I. et al. A memetic algorithm to address the multi-node resource-constrained project scheduling problem. J Sched 24, 413–429 (2021). https://doi.org/10.1007/s10951-021-00696-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-021-00696-5

Keywords

Navigation