Skip to main content

Advertisement

Log in

Sinensetin Attenuates Amyloid Beta25-35-Induced Oxidative Stress, Inflammation, and Apoptosis in SH-SY5Y Cells Through the TLR4/NF-κB Signaling Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sinensetin (SIN) is an important active compound that exists widely in citrus plants, and has been reported to exhibit various pharmacological properties, including anti-oxidative, anti-inflammatory, and anti-tumor. This study was designed to examine whether SIN can protect against amyloid beta (Aβ)-induced neurotoxicity and to elucidate the underlying mechanism. Our results showed that pretreatment with SIN for 1 h, followed by co-treatment with Aβ plus SIN for 24 h, attenuated Aβ25-35-induced cell viability reduction, oxidative stress, inflammation, and apoptosis in a dose-dependent manner. Aβ25-35-induced upregulation of Toll-like receptor 4 (TLR4) expression and nuclear translocation of nuclear factor-kappaB (NF-κB) p65 subunit were inhibited by pretreatment with SIN. Furthermore, the protective effect of SIN was abrogated by TLR4 overexpression. Hence, our data suggested that SIN attenuated Aβ25-35-induced neurotoxicity through the TLR4/NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344. https://doi.org/10.1056/NEJMra0909142

    Article  PubMed  CAS  Google Scholar 

  2. Tavana JP, Rosene M, Jensen NO, Ridge PG, Kauwe JS, Karch CM (2019) RAB10: an Alzheimer’s disease resilience locus and potential drug target. Clin Interv Aging 14:73–79. https://doi.org/10.2147/CIA.S159148

    Article  PubMed  CAS  Google Scholar 

  3. Guo LL, Guan ZZ, Huang Y, Wang YL, Shi JS (2013) The neurotoxicity of beta-amyloid peptide toward rat brain is associated with enhanced oxidative stress, inflammation and apoptosis, all of which can be attenuated by scutellarin. Exp Toxicol Pathol 65(5):579–584. https://doi.org/10.1016/j.etp.2012.05.003

    Article  PubMed  CAS  Google Scholar 

  4. Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai LH (2010) Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci 30(45):14946–14954. https://doi.org/10.1523/JNEUROSCI.4305-10.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Aliaga E, Silhol M, Bonneau N, Maurice T, Arancibia S, Tapia-Arancibia L (2010) Dual response of BDNF to sublethal concentrations of beta-amyloid peptides in cultured cortical neurons. Neurobiol Dis 37(1):208–217. https://doi.org/10.1016/j.nbd.2009.10.004

    Article  PubMed  CAS  Google Scholar 

  6. Huang X-F, Li J-J, Tao Y-G, Wang X-Q, Zhang R-L, Zhang J-L, Su Z-Q, Huang Q-H, Deng Y-H (2018) Geniposide attenuates Aβ25-35-induced neurotoxicity via the TLR4/NF-κB pathway in HT22 cells. RSC Adv 8(34):18926–18937. https://doi.org/10.1039/c8ra01038b

    Article  CAS  Google Scholar 

  7. Zhou X, Yuan L, Zhao X, Hou C, Ma W, Yu H, Xiao R (2014) Genistein antagonizes inflammatory damage induced by beta-amyloid peptide in microglia through TLR4 and NF-kappaB. Nutrition 30(1):90–95. https://doi.org/10.1016/j.nut.2013.06.006

    Article  PubMed  CAS  Google Scholar 

  8. Thummayot S, Tocharus C, Jumnongprakhon P, Suksamrarn A, Tocharus J (2018) Cyanidin attenuates Abeta25-35-induced neuroinflammation by suppressing NF-kappaB activity downstream of TLR4/NOX4 in human neuroblastoma cells. Acta Pharmacol Sin 39(9):1439–1452. https://doi.org/10.1038/aps.2017.203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Perry VH (2004) The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun 18(5):407–413. https://doi.org/10.1016/j.bbi.2004.01.004

    Article  PubMed  CAS  Google Scholar 

  10. Nakanishi M, Hino M, Yoshimura M, Amakura Y, Nomoto H (2019) Identification of sinensetin and nobiletin as major antitrypanosomal factors in a citrus cultivar. Exp Parasitol 200:24–29. https://doi.org/10.1016/j.exppara.2019.03.008

    Article  PubMed  CAS  Google Scholar 

  11. Lyckander IM, Malterud KE (1996) Lipophilic flavonoids from Orthosiphon spicatus prevent oxidative inactivation of 15-lipoxygenase. Prostaglandins Leukot Essent Fatty Acids 54(4):239–246. https://doi.org/10.1016/s0952-3278(96)90054-x

    Article  PubMed  CAS  Google Scholar 

  12. Laavola M, Nieminen R, Yam MF, Sadikun A, Asmawi MZ, Basir R, Welling J, Vapaatalo H, Korhonen R, Moilanen E (2012) Flavonoids eupatorin and sinensetin present in Orthosiphon stamineus leaves inhibit inflammatory gene expression and STAT1 activation. Planta Med 78(8):779–786. https://doi.org/10.1055/s-0031-1298458

    Article  PubMed  CAS  Google Scholar 

  13. Shin HS, Kang SI, Yoon SA, Ko HC, Kim SJ (2012) Sinensetin attenuates LPS-induced inflammation by regulating the protein level of IkappaB-alpha. Biosci Biotechnol Biochem 76(4):847–849. https://doi.org/10.1271/bbb.110908

    Article  PubMed  CAS  Google Scholar 

  14. Tan KT, Lin MX, Lin SC, Tung YT, Lin SH, Lin CC (2019) Sinensetin induces apoptosis and autophagy in the treatment of human T-cell lymphoma. Anticancer Drugs 30(5):485–494. https://doi.org/10.1097/CAD.0000000000000756

    Article  PubMed  CAS  Google Scholar 

  15. Guevara I, Iwanejko J, Dembinska-Kiec A, Pankiewicz J, Wanat A, Anna P, Golabek I, Bartus S, Malczewska-Malec M, Szczudlik A (1998) Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 274(2):177–188. https://doi.org/10.1016/s0009-8981(98)00060-6

    Article  PubMed  CAS  Google Scholar 

  16. Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 32(11):1050–1060. https://doi.org/10.1016/s0891-5849(02)00794-3

    Article  PubMed  CAS  Google Scholar 

  17. Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ (2018) Amyloid toxicity in Alzheimer’s disease. Rev Neurosci 29(6):613–627. https://doi.org/10.1515/revneuro-2017-0063

    Article  PubMed  CAS  Google Scholar 

  18. Viola KL, Klein WL (2015) Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129(2):183–206. https://doi.org/10.1007/s00401-015-1386-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hwang S, Lim JW, Kim H (2017) Inhibitory effect of lycopene on amyloid-beta-induced apoptosis in neuronal cells. Nutrients. https://doi.org/10.3390/nu9080883

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464. https://doi.org/10.1016/j.redox.2017.10.014

    Article  PubMed  CAS  Google Scholar 

  21. Wang X, Wang W, Li L, Perry G, Lee HG (1842) Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 8:1240–1247. https://doi.org/10.1016/j.bbadis.2013.10.015

    Article  CAS  Google Scholar 

  22. Zhou WW, Lu S, Su YJ, Xue D, Yu XL, Wang SW, Zhang H, Xu PX, Xie XX, Liu RT (2014) Decreasing oxidative stress and neuroinflammation with a multifunctional peptide rescues memory deficits in mice with Alzheimer disease. Free Radic Biol Med 74:50–63. https://doi.org/10.1016/j.freeradbiomed.2014.06.013

    Article  PubMed  CAS  Google Scholar 

  23. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16(25):2766–2778. https://doi.org/10.2174/138161210793176572

    Article  PubMed  CAS  Google Scholar 

  24. Verri M, Pastoris O, Dossena M, Aquilani R, Guerriero F, Cuzzoni G, Venturini L, Ricevuti G, Bongiorno AI (2012) Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimer’s disease. Int J Immunopathol Pharmacol 25(2):345–353. https://doi.org/10.1177/039463201202500204

    Article  PubMed  CAS  Google Scholar 

  25. Butterfield DA, Griffin S, Munch G, Pasinetti GM (2002) Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. J Alzheimers Dis 4(3):193–201. https://doi.org/10.3233/jad-2002-4309

    Article  PubMed  CAS  Google Scholar 

  26. Wang SW, Wang YJ, Su YJ, Zhou WW, Yang SG, Zhang R, Zhao M, Li YN, Zhang ZP, Zhan DW, Liu RT (2012) Rutin inhibits beta-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines. Neurotoxicology 33(3):482–490. https://doi.org/10.1016/j.neuro.2012.03.003

    Article  PubMed  CAS  Google Scholar 

  27. Moreira PI, Zhu X, Liu Q, Honda K, Siedlak SL, Harris PL, Smith MA, Perry G (2006) Compensatory responses induced by oxidative stress in Alzheimer disease. Biol Res 39(1):7–13. https://doi.org/10.4067/s0716-97602006000100002

    Article  PubMed  CAS  Google Scholar 

  28. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1(2):120–129. https://doi.org/10.1038/35040009

    Article  PubMed  CAS  Google Scholar 

  29. Castro RE, Santos MM, Gloria PM, Ribeiro CJ, Ferreira DM, Xavier JM, Moreira R, Rodrigues CM (2010) Cell death targets and potential modulators in Alzheimer’s disease. Curr Pharm Des 16(25):2851–2864. https://doi.org/10.2174/138161210793176563

    Article  PubMed  CAS  Google Scholar 

  30. Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, Inayat I, Flavell RA (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311(5762):847–851. https://doi.org/10.1126/science.1115035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Paudel YN, Angelopoulou E, Piperi C, Othman I, Aamir K, Shaikh MF (2020) Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s disease (AD): from risk factors to therapeutic targeting. Cells. https://doi.org/10.3390/cells9020383

    Article  PubMed  PubMed Central  Google Scholar 

  32. Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Davies P, Marambaud P (2012) Resveratrol mitigates lipopolysaccharide- and Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT signaling cascade. J Neurochem 120(3):461–472. https://doi.org/10.1111/j.1471-4159.2011.07594.x

    Article  PubMed  CAS  Google Scholar 

  33. Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K (2007) Role of the Toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 20(6):947–956. https://doi.org/10.1159/000110455

    Article  PubMed  CAS  Google Scholar 

  34. Li H, Lv L, Wu C, Qi J, Shi B (2020) Methyl jasmonate protects microglial cells against beta-amyloid-induced oxidative stress and inflammation via Nrf2-dependent HO-1 pathway. Neuropsychiatr Dis Treat 16:1399–1410. https://doi.org/10.2147/NDT.S241142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51):6680–6684. https://doi.org/10.1038/sj.onc.1209954

    Article  PubMed  CAS  Google Scholar 

  36. Clemens JA, Stephenson DT, Smalstig EB, Dixon EP, Little SP (1997) Global ischemia activates nuclear factor-kappa B in forebrain neurons of rats. Stroke 28(5):1073–1080; discussion 1080–1071. https://doi.org/10.1161/01.str.28.5.1073

  37. Gabriel C, Justicia C, Camins A, Planas AM (1999) Activation of nuclear factor-kappaB in the rat brain after transient focal ischemia. Brain Res Mol Brain Res 65(1):61–69. https://doi.org/10.1016/s0169-328x(98)00330-1

    Article  PubMed  CAS  Google Scholar 

  38. Kaltschmidt B, Uherek M, Volk B, Baeuerle PA, Kaltschmidt C (1997) Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci USA 94(6):2642–2647. https://doi.org/10.1073/pnas.94.6.2642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mattson MP (2005) NF-κB in the survival and plasticity of neurons. Neurochem Res 30(6):883–893. https://doi.org/10.1007/s11064-005-6961-x

    Article  PubMed  CAS  Google Scholar 

  40. Youn K, Yu Y, Lee J, Jeong WS, Ho CT, Jun M (2017) Polymethoxyflavones: novel beta-secretase (BACE1) inhibitors from citrus peels. Nutrients 9(9):973. https://doi.org/10.3390/nu9090973

    Article  PubMed Central  CAS  Google Scholar 

  41. Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH (2020) BACE1 inhibitors: current status and future directions in treating Alzheimer’s disease. Med Res Rev 40(1):339–384. https://doi.org/10.1002/med.21622

    Article  PubMed  Google Scholar 

  42. Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y, Song W (2012) Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 15(1):77–90. https://doi.org/10.1017/S1461145711000149

    Article  PubMed  CAS  Google Scholar 

  43. Wang R, Chen S, Liu Y, Diao S, Xue Y, You X, Park EA, Liao FF (2015) All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor kappaB (NFkappaB) signaling. J Biol Chem 290(37):22532–22542. https://doi.org/10.1074/jbc.M115.662908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ji.

Ethics declarations

Conflict of interest

The authors have no financial competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, Z., Tang, X., Wang, Y. et al. Sinensetin Attenuates Amyloid Beta25-35-Induced Oxidative Stress, Inflammation, and Apoptosis in SH-SY5Y Cells Through the TLR4/NF-κB Signaling Pathway. Neurochem Res 46, 3012–3024 (2021). https://doi.org/10.1007/s11064-021-03406-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03406-x

Keywords

Navigation