Skip to main content

Advertisement

Log in

Brain structural changes in patients with cardio-facio-cutaneous syndrome: effects of BRAF gene mutation and epilepsy on brain development. A case–control study by quantitative magnetic resonance imaging

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the brain volumetric changes caused by BRAF gene mutation in non-epileptic CFC patients and the influence of the age of epilepsy onset on brain development in 2 cohorts of epileptic CFC patients.

Methods

We enrolled CFC patients carrying BRAF gene mutations without epilepsy (4 patients) and with epilepsy (16 patients). CFC epileptic patients were divided into two cohorts based on the age of seizure onset: early-age onset (7 children) and late-age onset (9 adolescents). All three cohorts of patients underwent 3D FSPGR T1-weighted imaging to assess supratentorial and infratentorial brain volumes. Moreover, for each compartment, gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) volumes were measured. All measurements were compared with those of age-matched controls without neuroimaging abnormalities.

Results

All CFC patients showed supratentorial and infratentorial WM reduction and supratentorial ventricular enlargement (p < 0.01).

However, patients with early age of epilepsy onset, compared with the other two cohorts of CFC patients, showed both GM and a more pronounced WM volume reduction (p < 0.01).

Conclusion

In non-epileptic CFC children, we demonstrated WM volumetric reduction suggesting a direct effect of BRAF gene mutation on brain development. Nevertheless, in CFC epileptic patients, the age of epilepsy onset may contribute to brain atrophy.

Brain atrophy in CFC patients, in part due to the natural history of the disease, may be worsened by epilepsy when it begins in the early ages because of interference with brain growth at that critical age of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pierpont ME, Magoulas PL, Adi S et al (2014) Cardio-facio-cutaneous syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 134:e1149–e1162. https://doi.org/10.1542/peds.2013-3189

    Article  PubMed  PubMed Central  Google Scholar 

  2. Niihori T, Aoki Y, Narumi Y et al (2006) Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 38:294–296. https://doi.org/10.1038/ng1749

    Article  CAS  PubMed  Google Scholar 

  3. Cao H, Alrejaye N, Klein OD et al (2017) A review of craniofacial and dental findings of the RASopathies. Orthod Craniofac Res 20(Suppl 1):32–38. https://doi.org/10.1111/ocr.12144

    Article  PubMed  PubMed Central  Google Scholar 

  4. Myers A, Bernstein JA, Brennan ML et al (2014) Perinatal features of the RASopathies: Noonan syndrome, cardiofaciocutaneous syndrome and Costello syndrome. Am J Med Genet A 164A:2814–2821. https://doi.org/10.1002/ajmg.a.36737

    Article  PubMed  Google Scholar 

  5. Grebe TA, Clericuzio C (2000) Neurologic and gastrointestinal dysfunction in cardio-facio-cutaneous syndrome: identification of a severe phenotype. Am J Med Genet 95:135–143

    Article  CAS  PubMed  Google Scholar 

  6. Adachi M, Abe Y, Aoki Y, Matsubara Y (2012) Epilepsy in RAS/MAPK syndrome: two cases of cardio-facio-cutaneous syndrome with epileptic encephalopathy and a literature review. Seizure 21:55–60. https://doi.org/10.1016/j.seizure.2011.07.013

    Article  PubMed  Google Scholar 

  7. Yoon G, Rosenberg J, Blaser S, Rauen KA (2007) Neurological complications of cardio-facio-cutaneous syndrome. Dev Med Child Neurol 49:894–899. https://doi.org/10.1111/j.1469-8749.2007.00894.x

    Article  PubMed  Google Scholar 

  8. Rauen KA (1993) Cardiofaciocutaneous syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al (eds) GeneReviews((R)). Seattle (WA)

  9. Wakusawa K, Kobayashi S, Abe Y et al (2014) A girl with cardio-facio-cutaneous syndrome complicated with status epilepticus and acute encephalopathy. Brain Dev 36:61–63. https://doi.org/10.1016/j.braindev.2012.12.007

    Article  PubMed  Google Scholar 

  10. Cabrera S, Morel C, Tartaglia MC (2016) Clinical report: cognitive decline in a patient with cardiofaciocutaneous syndrome. Am J Med Genet A 170A:1251–1256. https://doi.org/10.1002/ajmg.a.37552

    Article  PubMed  Google Scholar 

  11. Rodriguez-Viciana P, Tetsu O, Tidyman WE et al (2006) Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311:1287–1290. https://doi.org/10.1126/science.1124642

    Article  CAS  PubMed  Google Scholar 

  12. Tidyman WE, Rauen KA (2009) The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev 19:230–236. https://doi.org/10.1016/j.gde.2009.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Papadopoulou E, Sifakis S, Sol-Church K et al (2011) CNS imaging is a key diagnostic tool in the evaluation of patients with CFC syndrome: two cases and literature review. Am J Med Genet A 155A:605–611. https://doi.org/10.1002/ajmg.a.33787

    Article  CAS  PubMed  Google Scholar 

  14. Manci EA, Martinez JE, Horenstein MG et al (2005) Cardiofaciocutaneous syndrome (CFC) with congenital peripheral neuropathy and nonorganic malnutrition: an autopsy study. Am J Med Genet A 137:1–8. https://doi.org/10.1002/ajmg.a.30834

    Article  PubMed  Google Scholar 

  15. Cizmeci MN, Lequin M, Lichtenbelt KD et al (2018) Characteristic MR imaging findings of the neonatal brain in RASopathies. AJNR Am J Neuroradiol 39:1146–1152. https://doi.org/10.3174/ajnr.A5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sabatino G, Verrotti A, Domizio S et al (1997) The cardio-facio-cutaneous syndrome: a long-term follow-up of two patients, with special reference to the neurological features. Childs Nerv Syst 13:238–241. https://doi.org/10.1007/s003810050075

    Article  CAS  PubMed  Google Scholar 

  17. Gross-Tsur V, Gross-Kieselstein E, Amir N (1990) Cardio-facio cutaneous syndrome: neurological manifestations. Clin Genet 38:382–386. https://doi.org/10.1111/j.1399-0004.1990.tb03600.x

    Article  CAS  PubMed  Google Scholar 

  18. Kahle KT, Kulkarni AV, Limbrick DD, Warf BC (2016) Hydrocephalus in children Lancet Lond Engl 387:788–799. https://doi.org/10.1016/S0140-6736(15)60694-8

    Article  Google Scholar 

  19. Reinker KA, Stevenson DA, Tsung A (2011) Orthopaedic conditions in Ras/MAPK related disorders. J Pediatr Orthop 31:599–605. https://doi.org/10.1097/BPO.0b013e318220396e

    Article  PubMed  Google Scholar 

  20. Kousi M, Katsanis N (2016) The genetic basis of hydrocephalus. Annu Rev Neurosci 39:409–435. https://doi.org/10.1146/annurev-neuro-070815-014023

    Article  CAS  PubMed  Google Scholar 

  21. Calandrelli R, Pilato F, Massimi L et al (2020) Posterior cranial fossa maldevelopment in infants with repaired open myelomeningoceles: double trouble or a dynamic process of posterior cranial fossa abnormalities? World Neurosurg 141:e989–e997. https://doi.org/10.1016/j.wneu.2020.06.106

    Article  PubMed  Google Scholar 

  22. Caciagli L, Bernasconi A, Wiebe S et al (2017) A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy: time is brain? Neurology 89:506–516. https://doi.org/10.1212/WNL.0000000000004176

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hocker S, Nagarajan E, Rabinstein AA et al (2016) Progressive brain atrophy in super-refractory status epilepticus. JAMA Neurol 73:1201–1207. https://doi.org/10.1001/jamaneurol.2016.1572

    Article  PubMed  Google Scholar 

  24. Kim YE, Baek ST (2019) Neurodevelopmental aspects of RASopathies. Mol Cells 42:441–447. https://doi.org/10.14348/molcells.2019.0037

  25. Nickels KC, Zaccariello MJ, Hamiwka LD, Wirrell EC (2016) Cognitive and neurodevelopmental comorbidities in paediatric epilepsy. Nat Rev Neurol 12:465–476. https://doi.org/10.1038/nrneurol.2016.98

    Article  CAS  PubMed  Google Scholar 

  26. Vatansever D, Kyriakopoulou V, Allsop JM et al (2013) Multidimensional analysis of fetal posterior fossa in health and disease. Cerebellum 12:632–644. https://doi.org/10.1007/s12311-013-0470-2

    Article  PubMed  Google Scholar 

  27. Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  PubMed  Google Scholar 

  28. Chepkoech J-L, Walhovd KB, Grydeland H et al (2016) Effects of change in FreeSurfer version on classification accuracy of patients with Alzheimer’s disease and mild cognitive impairment. Hum Brain Mapp 37:1831–1841. https://doi.org/10.1002/hbm.23139

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I Segmentation and surface reconstruction Neuroimage 9:179–194. https://doi.org/10.1006/nimg.1998.0395

    Article  CAS  PubMed  Google Scholar 

  30. Segonne F, Dale AM, Busa E et al (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22:1060–1075. https://doi.org/10.1016/j.neuroimage.2004.03.032

    Article  CAS  PubMed  Google Scholar 

  31. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355. https://doi.org/10.1016/s0896-6273(02)00569-x

    Article  CAS  PubMed  Google Scholar 

  32. Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  PubMed  Google Scholar 

  33. Iglesias JE, Van Leemput K, Bhatt P et al (2015) Bayesian segmentation of brainstem structures in MRI. Neuroimage 113:184–195. https://doi.org/10.1016/j.neuroimage.2015.02.065

    Article  PubMed  Google Scholar 

  34. Kang M, Lee Y-S (2019) The impact of RASopathy-associated mutations on CNS development in mice and humans. Mol Brain 12:96. https://doi.org/10.1186/s13041-019-0517-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aizaki K, Sugai K, Saito Y et al (2011) Cardio-facio-cutaneous syndrome with infantile spasms and delayed myelination. Brain Dev 33:166–169. https://doi.org/10.1016/j.braindev.2010.03.008

    Article  PubMed  Google Scholar 

  36. Suzuki-Muromoto S, Miyabayashi T, Nagai K et al (2019) Leucine-485 deletion variant of BRAF may exhibit the severe end of the clinical spectrum of CFC syndrome. J Hum Genet 64:499–504. https://doi.org/10.1038/s10038-019-0579-3

    Article  CAS  PubMed  Google Scholar 

  37. Bonilha L, Rorden C, Appenzeller S et al (2006) Gray matter atrophy associated with duration of temporal lobe epilepsy. Neuroimage 32:1070–1079. https://doi.org/10.1016/j.neuroimage.2006.05.038

    Article  PubMed  Google Scholar 

  38. Doucet GE, Sharan A, Pustina D et al (2015) Early and late age of seizure onset have a differential impact on brain resting-state organization in temporal lobe epilepsy. Brain Topogr 28:113–126. https://doi.org/10.1007/s10548-014-0366-6

    Article  PubMed  Google Scholar 

  39. Klingberg T, Hedehus M, Temple E et al (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25:493–500. https://doi.org/10.1016/s0896-6273(00)80911-3

    Article  CAS  PubMed  Google Scholar 

  40. Munakata S, Okada T, Okahashi A et al (2013) Gray matter volumetric MRI differences late-preterm and term infants. Brain Dev 35:10–16. https://doi.org/10.1016/j.braindev.2011.12.011

    Article  PubMed  Google Scholar 

  41. Tierney AL, Nelson CA (2009) Brain development and the role of experience in the early years. Zero Three 30:9–13

    PubMed  PubMed Central  Google Scholar 

  42. Cendes F (2005) Progressive hippocampal and extrahippocampal atrophy in drug resistant epilepsy: review. Curr Opin Neurol 18:173–177. https://doi.org/10.1097/01.wco.0000162860.49842.90

    Article  PubMed  Google Scholar 

  43. Stefanatou M, Gatzonis S, Peskostas A et al (2019) Drug-responsive versus drug-refractory mesial temporal lobe epilepsy: a single-center prospective outcome study. Postgrad Med 131:479–485. https://doi.org/10.1080/00325481.2019.1663126

    Article  PubMed  Google Scholar 

  44. Kamali A, Kramer LA, Frye RE et al (2010) Diffusion tensor tractography of the human brain cortico-ponto-cerebellar pathways: a quantitative preliminary study. J Magn Reson Imaging 32:809–817. https://doi.org/10.1002/jmri.22330

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brodal P, Bjaalie JG (1997) Salient anatomic features of the cortico-ponto-cerebellar pathway. Prog Brain Res 114:227–249. https://doi.org/10.1016/s0079-6123(08)63367-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rosalinda Calandrelli: project development, data collection, manuscript writing.

Fabio Pilato: data collection, statistical analysis, manuscript writing.

Marco Panfili: data collection.

Domenica Battaglia: data collection.

Maria Luigia Gambardella: patient recruitment, drafting paper.

Cesare Colosimo: project development, manuscript writing.

All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Fabio Pilato.

Ethics declarations

Conflict of interest

Rosalinda Calandrelli declares that she has no conflict of interest.

Fabio Pilato declares that he has no conflict of interest.

Marco Panfili declares that he has no conflict of interest.

Domenica Battaglia declares that she has no conflict of interest.

Maria Luigia Gambardella declares that she has no conflict of interest.

Cesare Colosimo declares that he is a scientific consultant for Bracco Diagnostics Inc. and Bayer HealthCare.

Ethical approval

We declare that all procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calandrelli, R., Pilato, F., Panfili, M. et al. Brain structural changes in patients with cardio-facio-cutaneous syndrome: effects of BRAF gene mutation and epilepsy on brain development. A case–control study by quantitative magnetic resonance imaging. Neuroradiology 64, 185–195 (2022). https://doi.org/10.1007/s00234-021-02769-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-021-02769-w

Keywords

Navigation