Skip to main content
Log in

Oxidative stress-responsive apoptosis-inducing protein in patients with heterozygous familial hypercholesterolemia

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Oxidative stress, an inducer of apoptosis, plays a critical role in ischemia/reperfusion injury and atherosclerosis. We previously identified an apoptosis-inducing ligand, the post-translationally modified secreted form of eukaryotic translation initiation factor 5A (eIF5A), ‘oxidative stress-responsive apoptosis-inducing protein’ (ORAIP). In this study, we investigated the role of ORAIP in patients with heterozygous familial hypercholesterolemia (HeFH), a leading cause of premature cardiovascular disease. We analyzed plasma ORAIP and oxidized low-density lipoprotein (oxLDL) levels in 60 patients with HeFH (60% male, 57.0 ± 13.6 years of age) and 20 patients with LDL-C hypercholesterolemia (DL, 85% male, 64.1 ± 13.3 years of age). The coronary artery atherosclerosis from the patients with HeFH who had a coronary artery bypass graft was investigated by double immunostaining. The plasma ORAIP levels in the patients with HeFH were significantly elevated compared to those in the patients with DL (73.5 ± 46.0 vs. 48.3 ± 21.4 ng/mL, p = 0.0277). The plasma oxLDL levels in HeFH patients were also elevated (156.8 ± 65.2 vs. 123.7 ± 46.6 mg/dL, p = 0.0461) compared to those in DL patients and correlated with maxLDL-C levels (R = 0.4454, p = 0.00648). Double-immunostaining of ORAIP and oxLDL in the coronary artery from patients with HeFH who had a coronary artery bypass graft showed that ORAIP and oxLDL were colocalized with apoptotic vascular smooth muscle cells in the atherosclerotic plaque. ORAIP plays a role in the development of oxidative stress-induced atherosclerosis and may be an important therapeutic target for plaque rupture in patients with HeFH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tangvarasittichai S (2015) Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 6:456–480

    Article  Google Scholar 

  2. Ansley DM, Wang B (2013) Oxidative stress and myocardial injury in the diabetic heart. J Pathol 229:232–241

    Article  CAS  Google Scholar 

  3. Gonzalez J, Valls N, Brito R, Rodrigo R (2014) Essential hypertension and oxidative stress: new insights. World J Cardiol 6:353–366

    Article  Google Scholar 

  4. Csont T, Bereczki E, Bencsik P, Fodor G, Gorbe A, Zvara A, Csonka C, Puskas LG, Santha M, Ferdinandy P (2007) Hypercholesterolemia increases myocardial oxidative and nitrosative stress thereby leading to cardiac dysfunction in apoB-100 transgenic mice. Cardiovasc Res 76:100–109

    Article  CAS  Google Scholar 

  5. Nielsen MH, Irvine H, Vedel S, Raungaard B, Beck-Nielsen H, Handberg A (2016) The impact of lipoprotein-associated oxidative stress on cell-specific microvesicle release in patients with familial hypercholesterolemia. Oxid Med Cell Longev 2016:2492858

    Article  CAS  Google Scholar 

  6. Pignatelli P, Sanguigni V, Lenti L, Loffredo L, Carnevale R, Sorge R, Violi F (2007) Oxidative stress-mediated platelet CD40 ligand upregulation in patients with hypercholesterolemia: effect of atorvastatin. J Thromb Haemost 5:1170–1178

    Article  CAS  Google Scholar 

  7. Gohbara M, Iwahashi N, Nakahashi H, Kataoka S, Takahashi H, Kirigaya J, Minamimoto Y, Akiyama E, Okada K, Matsuzawa Y, Konishi M, Maejima N, Hibi K, Kosuge M, Ebina T, Sugano T, Ishikawa T, Tamura K, Kimura K (2021) Clinical impact of admission urinary 8-hydroxydeoxyguanosine level for predicting cardiovascular mortality in patients with acute coronary syndrome. Heart Vessels 36:38–47

    Article  Google Scholar 

  8. Huang YC, Chin CC, Chen CS, Shindel AW, Ho DR, Lin CS, Shi CS (2015) Chronic cigarette smoking impairs erectile function through increased oxidative stress and apoptosis, decreased nNOS, endothelial and smooth muscle contents in a rat model. PLoS ONE 10:e0140728

    Article  Google Scholar 

  9. Mesaros C, Arora JS, Wholer A, Vachani A, Blair IA (2012) 8-Oxo-2’-deoxyguanosine as a biomarker of tobacco-smoking-induced oxidative stress. Free Radic Biol Med 53:610–617

    Article  CAS  Google Scholar 

  10. Bonomini F, Tengattini S, Fabiano A, Bianchi R, Rezzani R (2008) Atherosclerosis and oxidative stress. Histol Histopathol 23:381–390

    CAS  PubMed  Google Scholar 

  11. Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38

    Article  CAS  Google Scholar 

  12. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91:7A-11A

    Article  CAS  Google Scholar 

  13. Vogiatzi G, Tousoulis D, Stefanadis C (2009) The role of oxidative stress in atherosclerosis. Hellenic J Cardiol 50:402–409

    PubMed  Google Scholar 

  14. Seko Y, Fujimura T, Yao T, Taka H, Mineki R, Okumura K, Murayama K (2015) Secreted tyrosine sulfated-eIF5A mediates oxidative stress-induced apoptosis. Sci Rep 5:13737

    Article  Google Scholar 

  15. Yao T, Fujimura T, Murayama K, Okumura K, Seko Y (2017) Oxidative stress-responsive apoptosis inducing protein (ORAIP) plays a critical role in high glucose-induced apoptosis in rat cardiac myocytes and murine pancreatic β-cells. Cells 6:35

    Article  Google Scholar 

  16. Kishimoto M, Suenaga J, Takase H, Araki K, Yao T, Fujimura T, Murayama K, Okumura K, Ueno R, Shimizu N, Kawahara N, Yamamoto T, Seko Y (2019) Oxidative stress-responsive apoptosis inducing protein (ORAIP) plays a critical role in cerebral ischemia/reperfusion injury. Sci Rep 9:13512

    Article  Google Scholar 

  17. Yao T, Tanaka K, Fujimura T, Murayama K, Fukuda S, Okumura K, Seko Y (2016) Plasma levels of oxidative stress-responsive apoptosis inducing protein (ORAIP) in patients with atrial fibrillation. Int J Cardiol 222:528–530

    Article  Google Scholar 

  18. Tanaka K, Yao T, Sato K, Okumura K, Seko Y (2017) Oxidative stress-responsive apoptosis inducing protein (ORAIP) plays a critical role in the cardiac injury in patients with heart failure. Ann Pharmacol Pharm 2:1100

    Google Scholar 

  19. Gidding SS, Champagne MA, de Ferranti SD, Defesche J, Ito MK, Knowles JW, McCrindle B, Raal F, Rader D, Santos RD, Lopes-Virella M, Watts GF, Wierzbicki AS, American Heart Association Atherosclerosis H, Obesity in Young Committee of Council on Cardiovascular Disease in Young CoC, Stroke Nursing CoFG, Translational B, Council on L, Cardiometabolic H (2015) The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation 132:2167–2192

    Article  Google Scholar 

  20. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, Wiklund O, Hegele RA, Raal FJ, Defesche JC, Wiegman A, Santos RD, Watts GF, Parhofer KG, Hovingh GK, Kovanen PT, Boileau C, Averna M, Boren J, Bruckert E, Catapano AL, Kuivenhoven JA, Pajukanta P, Ray K, Stalenhoef AF, Stroes E, Taskinen MR, Tybjaerg-Hansen A, European Atherosclerosis Society Consensus P (2013) Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J 34:3478–3490a

    Article  Google Scholar 

  21. Mata P, Alonso R, Perez de Isla L (2018) Atherosclerotic cardiovascular disease risk assessment in familial hypercholesterolemia: does one size fit all? Curr Opin Lipidol 29:445–452

    Article  CAS  Google Scholar 

  22. Teramoto T, Sasaki J, Ishibashi S, Birou S, Daida H, Dohi S, Egusa G, Hiro T, Hirobe K, Iida M, Kihara S, Kinoshita M, Maruyama C, Ohta T, Okamura T, Yamashita S, Yokode M, Yokote K, Harada-Shiba M, Arai H, Bujo H, Nohara A, Ohta T, Oikawa S, Okada T, Wakatsuki A (2014) Familial hypercholesterolemia. J Atheroscler Thromb 21:6–10

    Article  Google Scholar 

  23. Hashimoto T, Minami Y, Asakura K, Katamine M, Kato A, Katsura A, Sato T, Muramatsu Y, Kakizaki R, Fujiyoshi K, Ishida K, Kameda R, Meguro K, Shimohama T, Ako J (2021) Achilles tendon thickening is associated with higher incidence of adverse cardiovascular event in patients with coronary artery disease. Heart Vessels 36:163–169

    Article  Google Scholar 

  24. Niessner A, Sato K, Chaikof EL, Colmegna I, Goronzy JJ, Weyand CM (2006) Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-alpha. Circulation 114:2482–2489

    Article  CAS  Google Scholar 

  25. Pryshchep S, Sato K, Goronzy JJ, Weyand CM (2006) T cell recognition and killing of vascular smooth muscle cells in acute coronary syndrome. Circ Res 98:1168–1176

    Article  CAS  Google Scholar 

  26. Sato K, Niessner A, Kopecky SL, Frye RL, Goronzy JJ, Weyand CM (2006) TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. J Exp Med 203:239–250

    Article  CAS  Google Scholar 

  27. Sato K, Nuki T, Gomita K, Weyand CM, Hagiwara N (2010) Statins reduce endothelial cell apoptosis via inhibition of TRAIL expression on activated CD4 T cells in acute coronary syndrome. Atherosclerosis 213:33–39

    Article  CAS  Google Scholar 

  28. Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 94:437–444

    Article  CAS  Google Scholar 

  29. Newby AC (2016) Metalloproteinase production from macrophages—a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction. Exp Physiol 101:1327–1337

    Article  CAS  Google Scholar 

  30. Teng N, Maghzal GJ, Talib J, Rashid I, Lau AK, Stocker R (2017) The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep 22:51–73

    Article  CAS  Google Scholar 

  31. Harada-Shiba M, Arai H, Oikawa S, Ohta T, Okada T, Okamura T, Nohara A, Bujo H, Yokote K, Wakatsuki A, Ishibashi S, Yamashita S (2012) Guidelines for the management of familial hypercholesterolemia. J Atheroscler Thromb 19:1043–1060

    Article  CAS  Google Scholar 

  32. Morel DW, Hessler JR, Chisolm GM (1983) Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 24:1070–1076

    Article  CAS  Google Scholar 

  33. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 81:3883–3887

    Article  CAS  Google Scholar 

  34. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    Article  CAS  Google Scholar 

  35. Kyaw T, Peter K, Li Y, Tipping P, Toh BH, Bobik A (2017) Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges. Br J Pharmacol 174:3956–3972

    Article  CAS  Google Scholar 

  36. Afshar M, Rong J, Zhan Y, Chen HY, Engert JC, Sniderman AD, Larson MG, Vasan RS, Thanassoulis G (2020) Risks of incident cardiovascular disease associated with concomitant elevations in lipoprotein(a) and low-density lipoprotein cholesterol—the framingham heart study. J Am Heart Assoc 9:14711

    Article  Google Scholar 

  37. Suzuki Y, Yao T, Okumura K, Seko Y, Kitano S (2019) Elevation of the vitreous body concentrations of oxidative stress-responsive apoptosis-inducing protein (ORAIP) in proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 257:1519–1525

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.S. was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and a research support grant from Initiative for Realizing Diversity in the Research Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayoko Sato.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, K., Yao, T., Fujimura, T. et al. Oxidative stress-responsive apoptosis-inducing protein in patients with heterozygous familial hypercholesterolemia. Heart Vessels 36, 1923–1932 (2021). https://doi.org/10.1007/s00380-021-01898-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-021-01898-9

Keywords

Navigation