Skip to main content
Log in

The Simulation of Post-Heat Treatment in Selective Laser Melting Additive Manufacturing

  • Technical Article
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

Post-heat treatment takes a key role for the enhancement of mechanical properties in selective laser melting (SLM) additive manufacturing (AM) of 6xxx series aluminum alloy. To understand the basic mechanism for changes of mechanical properties in the SLM process and the following post-heat treatment, the finite element model and the precipitate evolution (PE) model of SLM AM were established and combined. Results show that the hardness of the fabricated AM component can reach 91.47 HV at 170 °C for 18.8 h, which is 63.1% higher than the as-fabricated state. The comparison of hardness in as-fabricated AM component with experiments shows the validity of the proposed models. Further work on chemical composition shows that the selection of powder particle can greatly affect the hardness of the fabricated AM component. In the selection of 6xxx series aluminum alloy powder, higher Mg and Si contents in their solubility domains lead to higher generation of Mg2Si nano-size precipitates and then cause higher hardness of AM specimen. After the optimal post-heat treatment, the maximum hardness can exceed 100 HV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ngo TD, Kashani A, Imbalzano G et al (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  2. DebRoy T, Wei H, Zuback JS et al (2018) Additive manufacturing of metallic components: process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  3. Herzog D, SeydaV WE, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–292

    Article  CAS  Google Scholar 

  4. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164. https://doi.org/10.1179/1743280411y.0000000014

    Article  CAS  Google Scholar 

  5. Shamsaei N, Yadollahi A, Bian LK, Thompson SM (2015) An overview of direct laser deposition for additive manufacturing. Part II: mechanical behavior, process parameter optimization and control. Addit Manuf 8:12–35. https://doi.org/10.1016/j.addma.2015.07.002

    Article  Google Scholar 

  6. Riquelme A, Rodrigo P, Escalera-Rodriguez MD, Rams J (2019) Effect of the process parameters in the additive manufacturing of in situ Al/AlN samples. J Manuf Process 46:271–278. https://doi.org/10.1016/j.jmapro.2019.09.011

    Article  Google Scholar 

  7. Fayazfar H, Salarian M, Rogalsky A et al (2018) A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties. Mater Des 144:98–128. https://doi.org/10.1016/j.matdes.2018.02.018

    Article  CAS  Google Scholar 

  8. Moser D, Cullinan M, Murthy J (2019) Multi-scale computational modeling of residual stress in selective laser melting with uncertainty quantification. Addit Manuf 29:100770. https://doi.org/10.1016/j.addma.2019.06.021

    Article  Google Scholar 

  9. Lindgren LE, Edberg J, Akerstrom P, Zhang Z (2019) Modeling of thermal stresses in low alloy steels. J Therm Stresses 42:725–743. https://doi.org/10.1080/01495739.2019.1587329

    Article  Google Scholar 

  10. Lindgren LE, Lundback A, Fisk M et al (2016) Simulation of additive manufacturing using coupled constitutive and microstructure models. Addit Manuf 12:144–158. https://doi.org/10.1016/j.addma.2016.05.005

    Article  CAS  Google Scholar 

  11. Maconachie T, Leary M, Lozanovski B et al (2019) SLM lattice structures: properties, performance, applications and challenges. Mater Des 183:108137. https://doi.org/10.1016/j.matdes.2019.108137

    Article  Google Scholar 

  12. Zhao Z, Chen J, Tan H, Tang J, Lin X (2020) In situ tailoring microstructure in laser solid formed titanium alloy for superior fatigue crack growth resistance. Scr Mater 174:53–57. https://doi.org/10.1016/j.scriptamat.2019.08.028

    Article  CAS  Google Scholar 

  13. Liu Y, Zhang J, Pang ZC (2018) Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel. Opt Laser Technol 98:23–32. https://doi.org/10.1016/j.optlastec.2017.07.034

    Article  CAS  Google Scholar 

  14. Loh LE, Chua CK, Yeong WY et al (2015) Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transf 80:288–300. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.014

    Article  CAS  Google Scholar 

  15. Yuan PP, Gu D (2015) Melt pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J Phys D Appl Phys 48:035303. https://doi.org/10.1088/0022-3727/48/3/035303

    Article  CAS  Google Scholar 

  16. Wang Z, Yan W, Liu W, Liu M (2019) Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method. Comput Mech 63:649–661. https://doi.org/10.1007/s00466-018-1614-5

    Article  Google Scholar 

  17. Ge P, Zhang Z, Tan Z et al (2019) An integrated modeling of process-structure-property relationship in laser additive manufacturing of duplex titanium alloy. Int J Therm Sci 140:329–343. https://doi.org/10.1016/j.ijthermalsci.2019.03.013

    Article  CAS  Google Scholar 

  18. Johnson KL, Rodgers TM, Underwood OD et al (2018) Simulation and experimental comparison of the thermo-mechanical history and 3D microstructure evolution of 304L stainless steel tubes manufactured using LENS. Comput Mech 61:559–574. https://doi.org/10.1007/s00466-017-1516-y

    Article  Google Scholar 

  19. Wang X, Chou K (2019) Microstructure simulations of Inconel 718 during selective laser melting using a phase field model. Int J Adv Manuf Technol 100:2147–2162. https://doi.org/10.1007/s00170-018-2814-z

    Article  Google Scholar 

  20. Yao XX, Ge P, Li JY et al (2020) Controlling the solidification process parameters of direct energy deposition additive manufacturing considering laser and powder properties. Comput Mater Sci 182:109788. https://doi.org/10.1016/j.commatsci.2020.109788

    Article  CAS  Google Scholar 

  21. Zinoviev A, Zinovieva O, Ploshikhin V et al (2016) Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method. Mater Des 106:321–329. https://doi.org/10.1016/j.matdes.2016.05.125

    Article  Google Scholar 

  22. Prashanth KG, Eckert J (2017) Formation of metastable cellular microstructures in selective laser melted alloys. J Alloys Compd 707:27–34. https://doi.org/10.1016/j.jallcom.2016.12.209

    Article  CAS  Google Scholar 

  23. Zhao JY, Wang GX, Ye C, Dong YL (2017) A numerical model coupling diffusion and grain growth in nanocrystalline materials. Comput Mater Sci 136:243–252. https://doi.org/10.1016/j.commatsci.2017.05.010

    Article  CAS  Google Scholar 

  24. Andani MT, Karamooz-Ravari MR, Mirzaeifar R, Ni J (2018) Micromechanics modeling of metallic alloys 3D printed by selective laser melting. Mater Des 137:204–213. https://doi.org/10.1016/j.matdes.2017.10.026

    Article  CAS  Google Scholar 

  25. Yan WT, Lian YP, Yu C et al (2018) An integrated process–structure–property modeling framework for additive manufacturing. Comput Methods Appl Mech Eng 339:184–204. https://doi.org/10.1016/j.cma.2018.05.004

    Article  Google Scholar 

  26. Anderson MJ, Benson J, Brooks J et al (2019) Predicting precipitation kinetics during the annealing of additive manufactured inconel 625 components. Integr Mater Manuf Innov 8:154–166. https://doi.org/10.1007/s40192-019-00134-7

    Article  Google Scholar 

  27. Cai XY, Dong BL, Bai JY et al (2019) Effects of post-deposition heat treatment on microstructures of GTA-additive manufactured 2219-Al. Sci Technol Weld Join 24:474–483. https://doi.org/10.1080/13621718.2019.1580440

    Article  CAS  Google Scholar 

  28. Jahns K, Bappert R, Bohlke P, Krupp U (2020) Additive manufacturing of CuCr1Zr by development of a gas atomization and laser powder bed fusion routine. Int J Adv Manuf Technol 107:2151–2161. https://doi.org/10.1007/s00170-020-04941-7

    Article  Google Scholar 

  29. Myhr OR, Grong O (2000) Modelling of non-isothermal transformations in alloys containing a particle distribution. Acta Mater 48:1605–1615. https://doi.org/10.1016/s1359-6454(99)00435-8

    Article  CAS  Google Scholar 

  30. Zhang Z, Wan ZY, Lindgren LE et al (2017) The simulation of precipitation evolutions and mechanical properties in friction stir welding with post-weld heat treatments. J Mater Eng Perform 26:5731–5740. https://doi.org/10.1007/s11665-017-3069-9

    Article  CAS  Google Scholar 

  31. Simar A, Brechet Y, de Meester B et al (2007) Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A–T6. Acta Mater 55:6133–6143. https://doi.org/10.1016/j.actamat.2007.07.012

    Article  CAS  Google Scholar 

  32. Gallais C, Denquin A, Brechet Y, Lapasset G (2008) Precipitation microstructures in an AA6056 aluminium alloy after friction stir welding: characterisation and modelling. Mater Sci Eng A 496:77–89. https://doi.org/10.1016/j.msea.2008.06.033

    Article  CAS  Google Scholar 

  33. Jonckheere C, de Meester B, Denquin A et al (2013) Torque, temperature and hardening precipitation evolution in dissimilar friction stir welds between 6061–T6 and 2014–T6 aluminum alloys. J Mater Process Technol 213:826–837. https://doi.org/10.1016/j.jmatprotec.2013.01.001

    Article  CAS  Google Scholar 

  34. Zhang Z, Tan Z, Li JY et al (2020) Integrated modeling of process-microstructure-property relations in friction stir additive manufacturing. Acta Metall Sin Engl 33:75–87. https://doi.org/10.1007/s40195-019-00945-9

    Article  CAS  Google Scholar 

  35. Zhang Z, Tan Z, Li JY et al (2019) Experimental and numerical studies of re-stirring and re-heating effects on mechanical properties in friction stir additive manufacturing. Int J Adv Manuf Technol 104:767–784. https://doi.org/10.1007/s00170-019-03917-6

    Article  Google Scholar 

  36. Samaras SN (2016) Effect of initial microstructure on the performance of 6xxx al-alloy laser welds: a computational study. J Mater Eng Perform 25:1729–1740. https://doi.org/10.1007/s11665-016-2037-0

    Article  CAS  Google Scholar 

  37. Liu SW, Zhu JJ, Zhu HH et al (2020) Effect of the track length and track number on the evolution of the melt pool characteristics of SLMed Al alloy: numerical and experimental study. Opt Laser Technol 339:184–204. https://doi.org/10.1016/j.optlastec.2019.105924

    Article  CAS  Google Scholar 

  38. Zhang Z, Yao XX, Ge P (2020) Phase-field-model-based analysis of the effects of powder particle on porosities and densities in selective laser sintering additive manufacturing. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2019.105230

    Article  Google Scholar 

  39. Li YL, Gu DD (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867. https://doi.org/10.1016/j.matdes.2014.07.006

    Article  CAS  Google Scholar 

  40. Myhr OR, Grong O, Andersen SJ (2001) Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater 49:65–75. https://doi.org/10.1016/s1359-6454(00)00301-3

    Article  CAS  Google Scholar 

  41. Myhr OR, Grong O, Fjaer HG, Marioara C (2004) Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing. Acta Mater 52:4997–5008. https://doi.org/10.1016/j.actamat.2004.07.002

    Article  CAS  Google Scholar 

  42. Simar A, Brechet Y, de Meester B et al (2012) Integrated modeling of friction stir welding of 6xxx series Al alloys: process, microstructure and properties. Prog Mater Sci 57:95–183. https://doi.org/10.1016/j.pmatsci.2011.05.003

    Article  CAS  Google Scholar 

  43. Trapp J, Rubenchik AM, Guss G et al (2017) In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today 9:341–349. https://doi.org/10.1016/j.apmt.2017.08.006

    Article  Google Scholar 

  44. Uddin SZ, Murr LE, Terrazas CA et al (2018) Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing. Addit Manuf 22:405–415. https://doi.org/10.1016/j.addma.2018.05.047

    Article  CAS  Google Scholar 

  45. Anderson MJ, Panwisawas C, Sovani Y et al (2018) Mean-field modelling of the intermetallic precipitate phases during heat treatment and additive manufacture of Inconel 718. Acta Mater 156:432–445. https://doi.org/10.1016/j.actamat.2018.07.002

    Article  CAS  Google Scholar 

  46. Jagle EA, Sheng ZD, Wu L (2016) Precipitation reactions in age-hardenable alloys during laser additive manufacturing. JOM 68:943–949. https://doi.org/10.1007/s11837-015-1764-2

    Article  CAS  Google Scholar 

  47. Khadyko M, Myhr OR, Hopperstad OS (2019) Work hardening and plastic anisotropy of naturally and artificially aged aluminium alloy AA6063. Mech Mater. https://doi.org/10.1016/j.mechmat.2019.103069

    Article  Google Scholar 

Download references

Acknowledgements

This study is funded by the National Natural Science Foundation of China (No. 11572074) and Liaoning Provincial Natural Science Foundation (2019-KF-05-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J.Y., Yao, X.X., Wang, Y.F. et al. The Simulation of Post-Heat Treatment in Selective Laser Melting Additive Manufacturing. Integr Mater Manuf Innov 10, 413–428 (2021). https://doi.org/10.1007/s40192-021-00222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-021-00222-7

Keywords

Navigation