Random singlet phase of cold atoms coupled to a photonic crystal waveguide

David Z. Li, Marco T. Manzoni, and Darrick E. Chang
Phys. Rev. A 104, 013523 – Published 26 July 2021

Abstract

Systems consisting of cold atoms trapped near photonic crystal waveguides have recently emerged as an exciting platform for quantum atom-light interfaces. Such a system enables realization of tunable long-range interactions between internal states of atoms (spins), mediated by guided photons. Currently, experimental platforms are still limited by low filling fractions, where the atom number is much smaller than the number of sites at which atoms can potentially be trapped. Here, we show that this regime in fact enables interesting many-body quantum phenomena, which are typically associated with short-range disordered systems. As an example, we show how the system can realize the so-called “random singlet phase” (RSP), in which all atoms pair into entangled singlets, but the pairing occurs over a distribution of ranges as opposed to nearest neighbors. We use a renormalization group method to obtain the distribution of spin entanglement in the RSP, and show how this state can be approximately reached via adiabatic evolution from the ground state of a noninteracting Hamiltonian. We also discuss how experimentally this RSP can be observed. We anticipate that this work will accelerate the route toward the exploration of strongly correlated matter in atom-nanophotonics interfaces, by avoiding the requirement of perfectly filled lattices.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 5 May 2020
  • Revised 13 May 2021
  • Accepted 29 June 2021

DOI:https://doi.org/10.1103/PhysRevA.104.013523

©2021 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

David Z. Li1, Marco T. Manzoni1, and Darrick E. Chang1,2

  • 1ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
  • 2ICREA-Institució Catalana de Recerca i Estudis Avançats, E-08015 Barcleona, Spain

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 1 — July 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×