Skip to main content
Log in

Thermal Analysis of the Stress-Strain State of the Surface Layer of Ground Si3N4–TiC-Ceramics

  • Published:
Refractories and Industrial Ceramics Aims and scope

With the help of the main concepts of computer engineering, we study the thermal and stressed state of the surface layer of ground Si3N4–TiC ceramics of four systems subjected to the action of heat flows. We analyze the regularities of temperature and stress distributions in six selected surfaces of the surface layer. We also determine specific features of formation of structural inhomogeneities of stresses and microstructural stress concentrators leading to changes in the structure of the ceramics due to the formation of discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Ch, Tian, N. Liu, and M. Lu, “Thermal shock and thermal fatigue behavior of Si3N4 – TIC nanocomposites,” Int. J. Refract. Met. Hard Mater., 26(5), 478 – 484 (2008).

    Article  Google Scholar 

  2. W. Xu, J. Yuan, and Z. Yin, “Dynamic fatigue behavior of Si3N4-based ceramic tools materials at ambient and high temperatures,” Ceram. Int., 45(17), part A, 21572 – 21578 (2019).

  3. H. Jiang, Zh. Xu, Z. Xiu, et al., “Effects of pulse conditions on microstructure and mechanical properties of Si3N4/6061Al composites prepared by spark plasma sintering (SPS),” J. Alloys Comp., 763, 822 – 834 (2018).

  4. G.-D. Zhan, J.-L. Shi, T.-R. Lai, and T.-Sh. Yen, “Micromechanisms of creep-fatigue crack growth in α′–β′-SiAlON at 1200°,” J. Eur. Ceram. Soc., 17(10), 1267 – 1276 (1997).

    Article  CAS  Google Scholar 

  5. M. Szafran, E. Bobryk, D. Kukla, et al., “Si3N4–Al2O3–TiC– Y2O3 composite intended for the edges of cutting tools,” Ceram. Int., 26(6), 579 – 582 (2000).

    Article  CAS  Google Scholar 

  6. G. Bernard-Granger, J. Crampon, and R. Duclos, “High-temperature creep behaviour of β′-Si3N4 α-YSiAlON ceramics,” J. Eur. Ceram. Soc., 17(13), 1647 – 1654 (1997).

    Article  CAS  Google Scholar 

  7. Y. Bao, Z. Jin, and L. Sun, “Strength degradation and lifetime prediction of HP- Si3N4/TiC under static load at 1200°C,” Mater. Lett., 45(1), 27 – 31 (2000).

    Article  CAS  Google Scholar 

  8. V Kuzin, “A model of forming the surface layer of ceramic parts based on silicon nitride in the grinding process,” Key Eng. Mater. Precis. Machining, 496, 127 – 131 (2012).

  9. J. Sun, H. Wang, Y. Wu, P. Zhou, et al., “Analysis of surface morphology and roughness of Si3N4 ceramic grinding,” Acad. J. Manufact. Eng., 16(3), 20 – 28 (2018).

    Google Scholar 

  10. V. V. Kuzin, “Technological aspects of diamond grinding of the nitride ceramics,” Russ. Eng. Res., 24(1), 23 – 28 (2004).

    Google Scholar 

  11. V. V. Kuzin, S. N. Grigor’ev, and S. Yu. Fedorov, “Evaluation of the reliability of ceramic tools with limited number of tests based on the established wear criteria,” Refract. Ind. Ceram., 59(4), 386 – 390 (2018).

    Article  CAS  Google Scholar 

  12. V. V. Kuzin, “Increasing the operational stability of nitride-ceramic cutters by optimizing their grinding conditions,” Russ. Eng. Res., 23(12), 32 – 36 (2003).

    Google Scholar 

  13. V. V. Kuzin, S. Yu. Fedorov, and S. N. Grigor’ev, “Tribological aspect in technological assurance of ceramic component quality,” Refract. Ind. Ceram., 60(3), 280 – 283 (2019).

    Article  CAS  Google Scholar 

  14. V. V. Kuzin, “Thermal state of ceramic cutting tools in high-speed cutting,” Russ. Eng. Res., 24(9), 32 – 40 (2004).

    Google Scholar 

  15. V. V. Kuzin, S. N. Grigoriev, and M. A. Volosova, “The role of the thermal factor in the wear mechanism of ceramic tools: Part 1. Macrolevel,” J. Friction Wear, 35(6), 505 – 510 (2014).

    Article  Google Scholar 

  16. V. V. Kuzin, S. N. Grigoriev, and M. Yu. Fedorov, “Role of the thermal factor in the wear mechanism of ceramic tools: Part 2. Microlevel,” J. Friction Wear, 36(1), 40 – 44 (2015).

    Article  Google Scholar 

  17. V. V. Kuzin, M. A. Volosova, and M. Yu. Fedorov, “Wear of tools from nitride ceramics when machining nickel-based alloys,” J. Friction Wear, 34(3), 199 – 203 (2013).

    Article  Google Scholar 

  18. V. Kuzin, S. Grigoriev, and M. Portnoy, “Effect of thermal loading on stresses in defective surface layer of ceramics,” Appl. Mech. Math., 827, 189 – 192 (2016).

    Google Scholar 

  19. V. V. Kuzin, S. N. Grigor’ev, and M. A. Volosova, “Effect of a TiC coating on the stress-strain state of a plate of a high-density nitride ceramic under nonsteady thermoelastic conditions,” Refract. Ind. Ceram., 54(5), 376 – 380 (2014).

    Article  CAS  Google Scholar 

  20. V. V. Kuzin, S. Yu. Fedorov, and S. N. Grigor’ev, “Correlation of diamond grinding regimes with Si3N4-ceramic surface quality,” Refract. Ind. Ceram., 58(1), 78 – 81 (2017).

  21. V. V. Kuzin, S. Yu. Fedorov, and S. N. Grigor’ev, “Production process planning for preparing Si3N4 – ceramic objects taking account of edge defectiveness,” Refract. Ind. Ceram., 58(5), 562 – 565 (2018).

    Article  CAS  Google Scholar 

  22. S. N. Grigoriev and V. V. Kuzin, “Prospects for tools with ceramic cutting plate in modern metal working,” Glass Ceram., 68(7/8), 253 – 257 (2011).

    Article  Google Scholar 

  23. V. V. Kuzin, S. N. Grigor’ev, D. R. Burton, et al., “A new generation of ceramic tools,” in: Proc. of the Tenth Internat. Conf. on Manufacturing Research (ICMR) (2012), pp. 523 – 528.

  24. V. V. Kuzin, S. N. Grigor’ev, and M. A. Volosova, “Basic framework for computer-aided engineering of ground ceramic surface layers,” Refract. Ind. Ceram., 61(3), 349 – 354 (2020).

    Article  CAS  Google Scholar 

  25. V. V. Kuzin, S. N. Grigor’ev, and M. A. Volosova, “Force analysis of the stress-strain state of the surface layer of ground Si3N4–TiC-ceramics,” Novye Ogneupory, No. 12, 54 – 60 (2020).

    Google Scholar 

  26. V. V. Kuzin, S. N. Grigor’ev, and M. A. Volosova, “Microstructural model of the surface layer of ceramics after diamond grinding taking into account its real structure and the conditions of contact interaction with elastic body,” Refract. Ind. Ceram., 61(3), 303 – 308 (2020).

    Article  CAS  Google Scholar 

  27. V. V. Kuzin and S. N. Grigoriev, “Method of investigation of the stress-strain state of surface layer of machine elements from a sintered nonuniform material,” Appl. Mech. Math., 486, 32 – 35 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kuzin.

Additional information

Translated from Novye Ogneupory, No. 1, pp. 61 – 68, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzin, V.V., Grigor’ev, S.N. & Volosova, M.A. Thermal Analysis of the Stress-Strain State of the Surface Layer of Ground Si3N4–TiC-Ceramics. Refract Ind Ceram 62, 60–66 (2021). https://doi.org/10.1007/s11148-021-00560-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-021-00560-1

Keywords

Navigation