Skip to main content
Log in

On Finite Simple Groups of Exceptional Lie Type over Fields of Different Characteristics with Coinciding Prime Graphs

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Suppose that \(G\) is a finite group, \(\pi(G)\) is the set of prime divisors of its order, and \(\omega(G)\) is the set of orders of its elements. A graph with the following adjacency relation is defined on \(\pi(G)\): different vertices \(r\) and \(s\) from \(\pi(G)\) are adjacent if and only if \(rs\in\omega(G)\). This graph is called the Gruenberg–Kegel graph or the prime graph of \(G\) and is denoted by \(GK(G)\). In A.V. Vasil’ev’s Question 16.26 from The Kourovka Notebook, it is required to describe all pairs of nonisomorphic finite simple nonabelian groups with identical Gruenberg–Kegel graphs. M. Hagie (2003) and M.A. Zvezdina (2013) gave such a description in the case where one of the groups coincides with a sporadic group and an alternating group, respectively. The author (2014) solved this question for pairs of finite simple groups of Lie type over fields of the same characteristic. In the present paper, we prove the following theorem.  Theorem.  Let \(G\) be a finite simple group of exceptional Lie type over a field with \(q\) elements, and let \(G_{1}\) be a finite simple group of Lie type over a field with \(q\) elements nonisomorphic to \(G\), where \(q\) and \(q_{1}\) are coprime. If \(GK(G)=GK(G_{1})\), then one of the following holds: \((1)\ \{G,G_{1}\}=\{G_{2}(3),A_{1}(13)\}\);  \((2)\ \{G,G_{1}\}=\{{{}^{2}}F_{4}(2)^{\prime},A_{3}(3)\}\);  \((3)\ \{G,G_{1}\}=\{{{}^{3}}D_{4}(q),A_{2}(q_{1})\}\), where \((q_{1}-1)_{3}\neq 3\) and \(q_{1}+1\neq 2^{k_{1}}\);  \((4)\ \{G,G_{1}\}=\{{{}^{3}}D_{4}(q),A_{4}^{\pm}(q_{1})\}\), where \((q_{1}\mp 1)_{5}\neq 5\);  \((5)\ \{G,G_{1}\}=\{G_{2}(q),G_{2}(q_{1})\}\), where \(q\) and \(q_{1}\) are not powers of 3;  \((6)\ \{G,G_{1}\}\) is one of the pairs \(\{F_{4}(q),F_{4}(q_{1})\}\), \(\{{{}^{3}}D_{4}(q),{{}^{3}}D_{4}(q_{1})\}\), and \(\{E_{8}(q),E_{8}(q_{1})\}\).  The existence of pairs of groups in statements (3)–(6) is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. The Kourovka Notebook : Unsolved Problems in Group Theory, Ed. by V. D. Mazurov and E. I. Khurkho, 18th ed. (Inst. Mat. SO RAN, Novosibirsk, 2014). https://arxiv.org/pdf/1401.0300v6.pdf

    MATH  Google Scholar 

  2. M. Hagie, “The prime graph of a sporadic simple group,” Comm. Algebra 31 (9), 4405–4424 (2003). https://doi.org/10.1081/AGB-120022800

    Article  MathSciNet  MATH  Google Scholar 

  3. M. A. Zvezdina, “On nonabelian simple groups having the same prime graph as an alternating group,” Sib. Mat. J. 54 (1), 47–55 (2013). https://doi.org/10.1134/S0037446613010072

    Article  MathSciNet  MATH  Google Scholar 

  4. M. R. Zinov’eva, “Finite simple groups of Lie type over a field of the same characteristic with the same prime graph,” Trudy Inst. Mat. Mekh. UrO RAN 20 (2), 168–183 (2014).

    MathSciNet  Google Scholar 

  5. M. R. Zinov’eva, “On finite simple classical groups over fields of different characteristics with coinciding prime graphs,” Proc. Steklov Inst. Math. 297 (Suppl. 1), S223–S239 (2017). https://doi.org/10.1134/S0081543817050248

    Article  MathSciNet  MATH  Google Scholar 

  6. M. R. Zinov’eva, “On finite simple linear and unitary groups of small size over fields of different characteristics with coinciding prime graphs,” Proc. Steklov Inst. Math. 307 (Suppl. 1), S179–S196 (2019). https://doi.org/10.1134/S0081543819070150

    Article  MATH  Google Scholar 

  7. A. S. Kondrat’ev, “Prime graph components of finite simple groups,” Math. USSR-Sb. 67 (1), 235–247 (1990).

    Article  MathSciNet  Google Scholar 

  8. J. S. Williams, “Prime graph components of finite groups,” J. Algebra 69 (2), 487–513 (1981). https://doi.org/10.1016/0021-8693(81)90218-0

    Article  MathSciNet  MATH  Google Scholar 

  9. A. V. Vasil’ev and E. P. Vdovin, “An adjacency criterion in the prime graph of a finite simple group,” Algebra Logic 44 (6), 381–406 (2005).

    Article  MathSciNet  Google Scholar 

  10. A. V. Vasil’ev and E. P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group,” Algebra Logic 50 (4), 291–322 (2011). https://doi.org/10.1007/s10469-011-9143-8

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Zsigmondy, “Zur Theorie der Potenzreste,” Monatsh. Math. Phys. 3 (1), 265–284 (1892). https://doi.org/10.1007/BF01692444

    Article  MathSciNet  MATH  Google Scholar 

  12. G. C. Gerono, “Note sur la résolution en nombres entiers et positifs de l’équation \(x^{m}=y^{n}+1\),” Nouv. Ann. Math. (2) 9, 469–471 (1870).

    MATH  Google Scholar 

  13. Y. Bugeaud and P. Mihăilescu P., “On the Nagell–Ljunggren equation \(\displaystyle\frac{x^{n}-1}{x-1}=y^{q}\),” Math. Scand. 101 (2), 177–183 (2007). https://doi.org/10.7146/math.scand.a-15038

    Article  MathSciNet  MATH  Google Scholar 

  14. A. V. Zavarnitsine, “Recognition of the simple groups \(L_{3}(q)\) by element orders,” J. Group Theory 7, 81–97 (2004).

    MathSciNet  MATH  Google Scholar 

  15. A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum,” Sib. Electron. Math. Rep. 6, 1–12 (2009).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-01-00456) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Zinov’eva.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 26, No. 2, pp. 147 - 160, 2020 https://doi.org/10.21538/0134-4889-2020-26-2-147-160.

Translated by E. Vasil’eva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinov’eva, M.R. On Finite Simple Groups of Exceptional Lie Type over Fields of Different Characteristics with Coinciding Prime Graphs. Proc. Steklov Inst. Math. 313 (Suppl 1), S228–S240 (2021). https://doi.org/10.1134/S0081543821030238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821030238

Keywords

Navigation