Skip to main content
Log in

Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The Lotka–Volterra competition model is applied to describe the interaction between the concentrations of healthy and cancerous cells in diseases associated with blood cancer. The model is supplemented with a differential equation characterizing the change in the concentration of a chemotherapeutic drug. The equation contains a scalar bounded control that specifies the rate of drug intake. We consider the problem of minimizing the weighted difference between the concentrations of cancerous and healthy cells at the end time of the treatment period. The Pontryagin maximum principle is used to establish analytically the properties of an optimal control. We describe situations in which the optimal control is a bang–bang function and situations in which the control may contain a singular arc in addition to bang–bang arcs. The results obtained are confirmed by corresponding numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Y. Todorov, E. Fimmel, A. S. Bratus, Y. S. Semenov, and F. Nuernberg, “An optimal strategy for leukemia therapy: A multi-objective approach,” Russ. J. Numer. Anal. Math. Model. 26 (6), 589–604 (2011). https://doi.org/10.1515/rjnamm.2011.035

    Article  MathSciNet  MATH  Google Scholar 

  2. A. S. Bratus, E. Fimmel, Y. Todorov, Y. S. Semenov, and F. Nürnberg, “On strategies on a mathematical model for leukemia therapy,” Nonlinear Anal. Real World Appl. 13 (3), 1044–1059 (2012). https://doi.org/10.1016/j.nonrwa.2011.02.027

    Article  MathSciNet  MATH  Google Scholar 

  3. A. S. Bratus, A. S. Goncharov, and I. T. Todorov, “Optimal control in a mathematical model for leukemia therapy with phase constraints,” Moscow Univ. Comput. Math. Cybern. 36 (4), 178–182 (2012). https://doi.org/10.3103/S0278641912040024

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bratus, Y. Todorov, I. Yegorov, and D. Yurchenko, “Solution of the feedback control problem in the mathematical model of leukaemia therapy,” J. Optim. Theory Appl. 159 (3), 590–605 (2013). https://doi.org/10.1007/s10957-013-0324-6

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Fimmel, Y. S. Semenov, and A. S. Bratus, “On optimal and suboptimal treatment strategies for a mathematical model of leukemia,” Math. Biosci. Eng. 10 (1), 151–165 (2013). https://doi.org/10.3934/mbe.2013.10.151

    Article  MathSciNet  MATH  Google Scholar 

  6. I. E. Egorov, “Assessing alternative control strategies for systems with asymptotically stable equilibrium positions,” Moscow Univ. Comput. Math. Cybern. 37 (3), 112–120 (2013). https://doi.org/10.3103/S0278641913030059

    Article  MATH  Google Scholar 

  7. R. V. Solé and T. S. Deisboeck, “An error catastrophe in cancer?” J. Theor. Biol. 228 (1), 47–54 (2004). https://doi.org/10.1016/j.jtbi.2003.08.018

    Article  MATH  Google Scholar 

  8. R. V. Solé, I. G. García, and J. Costa, “Spatial dynamics in cancer,” in Complex Systems Science in Biomedicine, Ed. by T.S. Deisboeck and J.Y. Kresh (Springer, Boston, MA, 2006), Ser. Topics in Biomedical Engineering, pp. 557–572. https://doi.org/10.1007/978-0-387-33532-2_24

    Chapter  Google Scholar 

  9. A. G. Kuchumov, “Mathematical modelling and biomechanical approach to describe the development, the diagnostics, and the treatment of oncological diseases,” Russ. J. Biomech. 14 (4), 41–66 (2010).

    Google Scholar 

  10. E. N. Khailov, A. D. Klimenkova, and A. Korobeinikov, “Optimal control for anticancer therapy,” in Extended Abstracts Spring 2018, Ed. by A. Korobeinikov, M. Caubergh, T. Lázaro, and J. Sardanyés (Birkhäuser, Cham, 2019) Ser. Trends in Mathematics 11, pp. 35–43.

    Chapter  Google Scholar 

  11. A. S. Bratus’, A. S. Novozhilov, and A. P. Platonov, Dynamic Systems and Biology Models (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  12. Yu. Yu. Tarasevich, Mathematical and Computer Modeling : Introductory Course (Librokom, Moscow, 2013) [in Russian].

    Google Scholar 

  13. P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964; Mir, Moscow, 1970).

    MATH  Google Scholar 

  14. E. B. Lee and L. Markus, Foundations of Optimal Control Theory (Wiley, New York, 1967; Nauka, Moscow, 1972).

    MATH  Google Scholar 

  15. F. P. Vasil’ev, Optimization Methods (Faktorial, Moscow, 2002) [in Russian].

    Google Scholar 

  16. H. Schättler and U. Ledzewicz, Geometric Optimal Control : Theory, Methods and Examples (Springer, New York, 2012).

    Book  Google Scholar 

  17. H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies: An Applications of Geometric Methods (Springer, New York, 2015).

    Book  Google Scholar 

  18. M. I. Zelikin and V. F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering (Birkhäuser, Boston, 1994).

    Book  Google Scholar 

  19. A. Yu. Levin, “Non-oscillation of solutions of the equation \(x^{n}+p_{1}(t)x^{n-1}+\mathinner{\ldotp\ldotp\ldotp}+p_{n}(t)x=0\),” Uspekhi Mat. Nauk 24 (2), 43–96 (1969).

    MathSciNet  MATH  Google Scholar 

  20. M. I. Zelikin and L. F. Zelikina, “The deviation of a functional from its optimal value under chattering decreases exponentially as the number of switchings grows,” Differ. Equations 35 (11), 1489–1493 (1999).

    MathSciNet  MATH  Google Scholar 

  21. J. Zhu, E. Trélat, and M. Cerf, “Planar titling maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering,” Discrete Cont. Dyn., Ser. B 21 (4), 1347–1388 (2016). https://doi.org/10.3934/dcdsb.2016.21.1347

    Article  MATH  Google Scholar 

  22. I. Yegorov, F. Mairet, and L. Gouzé, “Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature,” Optim. Control Appl. Meth. 39 (2), 1084–1109 (2018). https://doi.org/10.1002/oca.2398

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Grigorieva and E. Khailov, “Chattering and its approximation in control of psoriasis treatment,” Discrete Cont. Dyn., Ser. B 24 (5), 2251–2280 (2019). https://doi.org/10.3934/dcdsb.2019094

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Bonnans, P. Martinon, D. Giorgi, V. Grélard, S. Maindrault, O. Tissot, and J. Liu, BOCOP 2.0.5: User Guide (2017). http://bocop.org

Download references

Funding

The work of the first two authors was supported by the Russian Foundation for Basic Research jointly with the Department of Science and Technology of the Government of India (project no. 18-51-45003 IND_a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. L. Grigorenko, E. N. Khailov, E. V. Grigorieva or A. D. Klimenkova.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 26, No. 1, pp. 71 - 88, 2020 https://doi.org/10.21538/0134-4889-2020-26-1-71-88.

Translated by I. Tselishcheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorenko, N.L., Khailov, E.N., Grigorieva, E.V. et al. Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition. Proc. Steklov Inst. Math. 313 (Suppl 1), S100–S116 (2021). https://doi.org/10.1134/S0081543821030111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821030111

Keywords

Navigation