Skip to main content

Advertisement

Log in

Electrochemical Sensor for Facile and Highly Selective Determination of Antineoplastic Agent in Real Samples Using Glassy Carbon Electrode Modified by 2D-MoS2 NFs/TiO2 NPs

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Topotecan (TPT), a potential antitumor agent for treating various cancers (lung, ovarian, etc.), is a water-soluble camptothecin derivative compound. It is utilized in hydrochloride salt to treat ovarian cancer, lung cancer, and other types of cancer. Herein, a stable and sensitive electrochemical sensor for topotecan hydrochloride detection based on a glassy carbon electrode fabricated by 2D-MoS2/TiO2 nanoparticles (GCE) was reported. First, 2D-MoS2 and TiO2 nanoparticles were synthesized to be utilized as the modifier of the glassy carbon electrode. 2D-MoS2/TiO2 was characterized by scanning electron microscope (SEM), x-ray diffraction (XRD) method, diffuse reflectance spectroscopy (DRS), chronoamperometry (CA) electrochemical impedance spectroscopy (EIS), Differential pulse voltammetry (DPV), and cyclic voltammetry (CV). The detection of TPT on the 2D-MoS2/TiO2/GCE was investigated by voltammetric approaches, and the analytical results were obtained. This work indicates that the oxidation reaction of TPT on 2D-MoS2/TiO2/GCE is occurred by almost two electrons and two proton reaction pathway, that is performed by just diffusion. The as-fabricated sensor can operate in the linear response range of 0.01 to 18.57 μM (R2 = 0.9959), and limits of detection (LOD) of 9.8 nM for TPT. The results have proved that the proposed novel sensor can successfully determine TPT in the real samples with higher stability, sensitive reproducibility, and repeatability features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ (2001) Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 19:3312–3322

    Article  CAS  PubMed  Google Scholar 

  2. Gore M, Oza A, Rustin G, Malfetano J, Calvert H, Clarke-Pearson D, Carmichael J, Ross G, Beckman R, Fields S (2002) A randomised trial of oral versus intravenous topotecan in patients with relapsed epithelial ovarian cancer. Eur J Cancer 38:57–63

    Article  CAS  PubMed  Google Scholar 

  3. Özcan N, Karaman C, Atar N, Karaman O, Yola ML (2020) A novel molecularly ımprinting biosensor ıncluding graphene quantum dots/multi-walled carbon nanotubes composite for Interleukin-6 detection and electrochemical biosensor validation. ECS J Solid State Sci Technol 9:121010

    Article  CAS  Google Scholar 

  4. Karimi-Maleh H, Alizadeh M, Orooji Y, Karimi F, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK (2021) Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: a docking/experimental investigation. Ind Eng Chem Res 60:816–823

    Article  CAS  Google Scholar 

  5. Rajan R, Varghese SC, Kurup R, Gopalakrishnan R, Venkataraman R, Satheeshkumar K, Baby S (2013) Search for camptothecin-yielding Ophiorrhiza species from southern Western Ghats in India: a HPTLC-densitometry study. Ind Crops Prod 43:472–476

    Article  CAS  Google Scholar 

  6. Garst J (2007) Topotecan: an evolving option in the treatment of relapsed small cell lung cancer. Ther Clin Risk Manag 3:1087

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bookman MA, Malmström H, Bolis G, Gordon A, Lissoni A, Krebs JB, Fields SZ (1998) Topotecan for the treatment of advanced epithelial ovarian cancer: an open-label phase II study in patients treated after prior chemotherapy that contained cisplatin or carboplatin and paclitaxel. J Clin Oncol 16:3345–3352

    Article  CAS  PubMed  Google Scholar 

  8. Rabenecker P, Pinkwart K (2009) A look behind electrochemical detection of explosives. Propellants Explos Pyrotech 34:274–279

    Article  CAS  Google Scholar 

  9. Karimi-Maleh H, Yola ML, Atar N, Orooji Y, Karimi F, Kumar PS, Rouhi J, Baghayeri M (2021) A novel detection method for organophosphorus insecticide fenamiphos: molecularly imprinted electrochemical sensor based on core-shell Co3O4@ MOF-74 nanocomposite. J Colloid Interface Sci 592:174–185

    Article  CAS  PubMed  Google Scholar 

  10. Böke CP, Karaman O, Medetalibeyoglu H, Karaman C, Atar N, Yola ML (2020) A new approach for electrochemical detection of organochlorine compound lindane: development of molecular imprinting polymer with polyoxometalate/carbon nitride nanotubes composite and validation. Microchem J 157:105012

    Article  CAS  Google Scholar 

  11. Karaman C, Karaman O, Atar N, Yola ML (2021) Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@ carbon dots and Cd0.5Zn0.5S/d-Ti3C2Tx MXene composite for heart-type fatty acid–binding protein detection. Microchimica Acta 188:1–15

    Article  CAS  Google Scholar 

  12. Sanati AL, Faridbod F (2017) Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode. Int J Electrochem Sci 12:7997–8005

    Article  CAS  Google Scholar 

  13. Sanati AL, Faridbod F, Ganjali MR (2017) Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J Mol Liq 241:316–320

    Article  CAS  Google Scholar 

  14. Faridbod F, Sanati AL (2019) Graphene quantum dots in electrochemical sensors/biosensors. Curr Anal Chem 15:103–123

    Article  CAS  Google Scholar 

  15. Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK (2021) A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron 184:113252

    Article  CAS  PubMed  Google Scholar 

  16. Medetalibeyoğlu H, Beytur M, Manap S, Karaman C, Kardaş F, Akyıldırım O, Kotan G, Yüksek H, Atar N, Yola ML (2020) Molecular imprinted sensor including Au nanoparticles/polyoxometalate/two-dimensional hexagonal boron nitride nanocomposite for diazinon recognition. ECS J Solid State Sci Technol 9:101006

    Article  CAS  Google Scholar 

  17. Karaman C, Karaman O, Yola BB, Ulker İ, Atar N, Yola ML (2021) A novel electrochemical Aflatoxin B1 immunosensor based on gold nanoparticles decorated porous graphene nanoribbon and Ag nanocubes incorporated MoS2 nanosheets. New J Chem 45:11222–11233

    Article  CAS  Google Scholar 

  18. Baghizadeh A, Karimi-Maleh H, Khoshnama Z, Hassankhani A, Abbasghorbani M (2015) A voltammetric sensor for simultaneous determination of vitamin C and vitamin B 6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal Methods 8:549–557

    Article  Google Scholar 

  19. Asrami PN, Azar PA, Tehrani MS, Mozaffari SA (2020) Glucose oxidase/nano-ZnO/thin film deposit FTO as an ınnovative clinical transducer: a sensitive glucose biosensor. Front Chem 8:503

    Article  CAS  Google Scholar 

  20. Ghanei-Motlagh M, Baghayeri M (2020) Determination of trace Tl (I) by differential pulse anodic stripping voltammetry using a novel modified carbon paste electrode. J Electrochem Soc 167:066508

    Article  CAS  Google Scholar 

  21. Baghayeri M (2017) Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: application to determination of droxidopa in presence of phenobarbital. Sens Actuators B 240:255–263

    Article  CAS  Google Scholar 

  22. Veisi H, Eshbala FH, Hemmati S, Baghayeri M (2015) Selective hydrogen peroxide oxidation of sulfides to sulfones with carboxylated multi-walled carbon nano tubes (MWCNTs-COOH) as heterogeneous and recyclable nanocatalysts under organic solvent-free conditions. RSC Adv 5:10152–10158

    Article  CAS  Google Scholar 

  23. Baghayeri M, Maleki B, Zarghani R (2014) Voltammetric behavior of tiopronin on carbon paste electrode modified with nanocrystalline Fe50Ni50 alloys. Mater Sci Eng C 44:175–182

    Article  CAS  Google Scholar 

  24. Alavi-Tabari SA, Khalilzadeh MA, Karimi-Maleh H (2018) Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J Electroanal Chem 811:84–88

    Article  CAS  Google Scholar 

  25. Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H (2018) Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta 176:208–213

    Article  CAS  PubMed  Google Scholar 

  26. Karimi F, Zakariae N, Esmaeili R, Alizadeh M, Tamadon A-M (2020) Carbon nanotubes for amplification of electrochemical signal in drug and food analysis; a mini review. Curr Biochem Engin 6:114–119

    Article  Google Scholar 

  27. Asrami PN, Mozaffari SA, Tehrani MS, Azar PA (2018) A novel impedimetric glucose biosensor based on immobilized glucose oxidase on a CuO-Chitosan nanobiocomposite modified FTO electrode. Int J Biol Macromol 118:649–660

    Article  CAS  Google Scholar 

  28. Aykan A, Karaman O, Karaman C, Atar N, Yola ML (2021) A comparative study of CO catalytic oxidation on the single vacancy and di-vacancy graphene supported single-atom iridium catalysts: A DFT analysis. Surf Interfaces. https://doi.org/10.1016/j.surfin.2021.101293

    Article  Google Scholar 

  29. Akça A, Karaman O, Karaman C (2021) Mechanistic ınsights into catalytic reduction of N2O by CO over Cu-embedded graphene: a density functional theory perspective. ECS J Solid State Sci Technol 10:041003

    Article  CAS  Google Scholar 

  30. Suganya S, Kumar PS, Saravanan A (2017) Construction of active bio-nanocomposite by inseminated metal nanoparticles onto activated carbon: probing to antimicrobial activity. IET Nanobiotechnol 11:746–753

    Article  PubMed Central  Google Scholar 

  31. Christopher FC, Ponnusamy SK, Ganesan JJ, Ramamurthy R (2018) Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis—a comprehensive review. IET Nanobiotechnol 13:243–249

    Article  Google Scholar 

  32. Karaman C, Karaman O, Atar N, Yola ML (2021) Tailoring of cobalt phosphide anchored nitrogen and sulfur co-doped three dimensional graphene hybrid: boosted electrocatalytic performance towards hydrogen evolution reaction. Electrochimica Acta 380:138262

    Article  CAS  Google Scholar 

  33. Saravanan A, Kumar PS, Karishma S, Vo D-VN, Jeevanantham S, Yaashikaa P, George CS (2020) A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128580

    Article  PubMed  Google Scholar 

  34. Karimi-Maleh H, Ranjbari S, Tanhaei B, Ayati A, Orooji Y, Alizadeh M, Karimi F, Salmanpour S, Rouhi J, Sillanpää M (2021) Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: kinetic study. Environ Res 195:110809

    Article  CAS  PubMed  Google Scholar 

  35. Gerard N, Krishnan RS, Ponnusamy SK, Cabana H, Vaidyanathan VK (2016) Adsorptive potential of dispersible chitosan coated iron-oxide nanocomposites toward the elimination of arsenic from aqueous solution. Process Saf Environ Prot 104:185–195

    Article  CAS  Google Scholar 

  36. Karaman C (2021) Orange peel derived-nitrogen and sulfur Co-doped carbon dots: a nano-booster for enhancing oRR electrocatalytic performance of 3D graphene networks. Electroanalysis 33:1356–1369

    Article  CAS  Google Scholar 

  37. Karaman C, Aktaş Z, Bayram E, Karaman O, Kızıl Ç (2020) Correlation between the molecular structure of reducing agent and pH of graphene oxide dispersion on the formation of 3D-graphene networks. ECS J Solid State Sci Technol 9:071003

    Article  CAS  Google Scholar 

  38. Karaman C, Karaman O, Atar N, Yola ML (2021) Sustainable electrode material for high-energy supercapacitor: biomass-derived graphene-like porous carbon with three dimensional hierarchically ordered ion highways. Phys Chem Chem Phys 23:12807–12821

    Article  CAS  PubMed  Google Scholar 

  39. Kumar PS, Nair AS, Ramaswamy A, Saravanan A (2018) Nano-zero valent iron impregnated cashew nut shell: a solution to heavy metal contaminated water/wastewater. IET Nanobiotechnol 12:591–599

    Article  Google Scholar 

  40. Saravanan A, Kumar PS, Devi GK, Arumugam T (2016) Synthesis and characterization of metallic nanoparticles impregnated onto activated carbon using leaf extract of Mukia maderasapatna: evaluation of antimicrobial activities. Microb Pathog 97:198–203

    Article  CAS  PubMed  Google Scholar 

  41. Karimi-Maleh H, Ayati A, Davoodi R, Tanhaei B, Karimi F, Malekmohammadi S, Orooji Y, Fu L, Sillanpää M (2021) Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: a review. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.125880

    Article  Google Scholar 

  42. Asrami PN, Tehrani MS, Azar PA, Mozaffari SA (2017) Impedimetric glucose biosensor based on nanostructure nickel oxide transducer fabricated by reactive RF magnetron sputtering system. J Electroanal Chem 801:258–266

    Article  CAS  Google Scholar 

  43. Zhang W, Zhang P, Su Z, Wei G (2015) Synthesis and sensor applications of MoS2-based nanocomposites. Nanoscale 7:18364–18378

    Article  CAS  PubMed  Google Scholar 

  44. Li X, Zhu H (2015) Two-dimensional MoS2: properties, preparation, and applications. J Materiom 1:33–44

    Article  Google Scholar 

  45. Zhao W, Ribeiro RM, Eda G (2015) Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc Chem Res 48:91–99

    Article  CAS  PubMed  Google Scholar 

  46. Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9:9451–9469

    Article  CAS  PubMed  Google Scholar 

  47. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102

    Article  CAS  PubMed  Google Scholar 

  48. Wang T, Gao D, Zhuo J, Zhu Z, Papakonstantinou P, Li Y, Li M (2013) Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles. Chem Eur J 19:11939–11948

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Ma T, Ma S, Liu Y, Tian Y, Wang R, Jiang Y, Hou D, Wang J (2017) Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim Acta 184:203–210

    Article  CAS  Google Scholar 

  50. Kudr J, Adam V, Zitka O (2019) Fabrication of graphene/molybdenum disulfide composites and their usage as actuators for electrochemical sensors and biosensors. Molecules 24:3374

    Article  CAS  PubMed Central  Google Scholar 

  51. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  52. Asahi R, Taga Y, Mannstadt W, Freeman A (2000) Electronic and optical properties of anatase TiO2. Phys Rev B 61:7459

    Article  CAS  Google Scholar 

  53. Macak J, Hildebrand H, Marten-Jahns U, Schmuki P (2008) Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J Electroanal Chem 621:254–266

    Article  CAS  Google Scholar 

  54. Topoglidis E, Cass AE, Gilardi G, Sadeghi S, Beaumont N, Durrant JR (1998) Protein adsorption on nanocrystalline TiO2 films: an immobilization strategy for bioanalytical devices. Anal Chem 70:5111–5113

    Article  CAS  PubMed  Google Scholar 

  55. Li Q, Luo G, Feng J (2001) Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 film. Electroanalysis 13:359–363

    Article  CAS  Google Scholar 

  56. Yuan S, Hu S (2004) Characterization and electrochemical studies of Nafion/nano-TiO2 film modified electrodes. Electrochim Acta 49:4287–4293

    Article  CAS  Google Scholar 

  57. Burke TG, Malak H, Gryczynski I, Mi Z, Lakowicz JR (1996) Fluorescence detection of the anticancer drug topotecan in plasma and whole blood by two-photon excitation. Anal Biochem 242:266–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sanogo S, Silimbani P, Gaggeri R, Masini C (2021) Development and validation of an HPLC-DAD method for the simultaneous identification and quantification of Topotecan, Irinotecan, Etoposide, Doxorubicin and Epirubicin. Arab J Chem 14:1896

    Article  CAS  Google Scholar 

  59. Guichard N, Ogereau M, Falaschi L, Rudaz S, Schappler J, Bonnabry P, Fleury-Souverain S (2018) Determination of 16 antineoplastic drugs by capillary electrophoresis with UV detection: applications in quality control. Electrophoresis 39:2512–2520

    Article  CAS  PubMed  Google Scholar 

  60. Alavi-Tabari SA, Khalilzadeh MA, Karimi-Maleh H, Zareyee D (2018) An amplified platform nanostructure sensor for the analysis of epirubicin in the presence of topotecan as two important chemotherapy drugs for breast cancer therapy. New J Chem 42:3828–3832

    Article  CAS  Google Scholar 

  61. Çakıroğlu B, Özacar M (2020) A photoelectrochemical biosensor fabricated using hierarchically structured gold nanoparticle and MoS2 on tannic acid templated mesoporous TiO2. Electroanalysis 32:166–177

    Article  CAS  Google Scholar 

  62. Zhang X, Huang X, Xue M, Ye X, Lei W, Tang H, Li C (2015) Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres. Mater Lett 148:67–70

    Article  CAS  Google Scholar 

  63. Djerdj I, Tonejc A (2006) Structural investigations of nanocrystalline TiO2 samples. J Alloy Compd 413:159–174

    Article  CAS  Google Scholar 

  64. Petkov V, Billinge S, Larson P, Mahanti S, Vogt T, Rangan K, Kanatzidis M (2002) Structure of nanocrystalline materials using atomic pair distribution function analysis: study of LiMoS2. Phys Rev B 65:092105

    Article  CAS  Google Scholar 

  65. Tripathi AK, Singh MK, Mathpal MC, Mishra SK, Agarwal A (2013) Study of structural transformation in TiO2 nanoparticles and its optical properties. J Alloy Compd 549:114–120

    Article  CAS  Google Scholar 

  66. Güy N (2020) Directional transfer of photocarriers on CdS/g-C3N4 heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production. Appl Surf Sci 522:146442

    Article  CAS  Google Scholar 

  67. Ibrahim M, Ibrahim H, Almandil NB, Kawde A-N (2018) A novel nanocomposite based on gold nanoparticles loaded on acetylene black for electrochemical sensing of the anticancer drug topotecan in the presence of high concentration of uric acid. J Electroanal Chem 824:22–31

    Article  CAS  Google Scholar 

  68. Mohammadian A, Ebrahimi M, Karimi-Maleh H (2018) Synergic effect of 2D nitrogen doped reduced graphene nano-sheet and ionic liquid as a new approach for fabrication of anticancer drug sensor in analysis of doxorubicin and topotecan. J Mol Liq 265:727–732

    Article  CAS  Google Scholar 

  69. Er E, Erk N (2020) A novel electrochemical sensing platform based on mono-dispersed gold nanorods modified graphene for the sensitive determination of topotecan. Sens Actuators B 320:128320

    Article  CAS  Google Scholar 

  70. Beitollahi H, Dehghannoudeh G, Moghaddam HM, Forootanfar H (2017) A sensitive electrochemical DNA biosensor for anticancer drug topotecan based on graphene carbon paste electrode. J Electrochem Soc 164:H812

    Article  CAS  Google Scholar 

  71. Congur G, Erdem A, Mese F (2015) Electrochemical investigation of the interaction between topotecan and DNA at disposable graphite electrodes. Bioelectrochemistry 102:21–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Projects Commission of Ankara University (Project Number: 21B0237005 and 19L0237004) and Zonguldak Bülent Ecevit University (Project number: 2019-72118496-06). M.O. thanks the Turkish Academy of Sciences (TUBA) for partial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Mehmandoust or Nevin Erk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmandoust, M., Çakar, S., Özacar, M. et al. Electrochemical Sensor for Facile and Highly Selective Determination of Antineoplastic Agent in Real Samples Using Glassy Carbon Electrode Modified by 2D-MoS2 NFs/TiO2 NPs. Top Catal 65, 564–576 (2022). https://doi.org/10.1007/s11244-021-01479-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01479-0

Keywords

Navigation