Skip to main content
Log in

Vulnerability modellers toolkit, an open-source platform for vulnerability analysis

  • Original Article
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Vulnerability functions describe the expected loss for a given ground shaking intensity level and are an essential component in probabilistic seismic risk assessment. This manuscript presents a novel open-source platform for the derivation of analytical fragility and vulnerability models, covering state-of-the-art methodologies, and addressing critical issues in vulnerability modelling such as uncertainty propagation, validation/verification of results and sufficiency/efficiency of intensity measure types. This framework is divided into seven modules designed to guide users through the different stages of analytical vulnerability modelling from the selection of ground motion records to the validation and verification of the models. The platform was implemented in the Python programming language and it is freely accessible through a public GitHub repository. A graphical user interface is included with the toolkit and is intended to be a general-purpose method for modellers to interact with the vulnerability modellers toolkit (VMTK). Experienced users are encouraged to use Python’s scripting capabilities to explore all the features of the VMTK source code and to contribute to future releases of the toolkit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

adapted from Martins and Silva 2020)

Fig. 9
Fig. 10

adapted from Martins and Silva 2020]

Fig. 11
Fig. 12

adapted from Silva 2019]

Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. https://github.com/GEMScienceTools/VMTK-Vulnerability-Modellers-ToolKit

    https://doi.org/10.5281/zenodo.5019331

  2. https://github.com/bakerjw/CS_Selection

  3. https://opensees.berkeley.edu/wiki/index.php/Main_Page

References

  • Baker JW, Cornell CA (2006) Spectral shape, epsilon and record selection. Earthq Eng Struct Dynam 35(9):1077–1095. https://doi.org/10.1002/eqe.571

    Article  Google Scholar 

  • Baker JW, Lee C (2018) An improved algorithm for selecting ground motions to match a conditional spectrum. J Earthq Eng 22(4):708–723. https://doi.org/10.1080/13632469.2016.1264334

    Article  Google Scholar 

  • Baltzopoulos G, Baraschino R, Iervolino I, Vamvatsikos D (2017) SPO2FRAG: software for seismic fragility assessment based on static pushover. Bull Earthq Eng 15(10):4399–4425. https://doi.org/10.1007/s10518-017-0145-3

    Article  Google Scholar 

  • Beck JL, Porter KA, Shaikhutdinov RV, Au SK, Mizukoshi K, Miyamura M, Ishida H, Moroi T, Tsukada Y, Masuda M (2002) Impact of seismic risk on lifetime property values, Report no. EERL2002-04, California Institute of Technology Passadena, California

  • Brzev S, Scawthorn C, Charleson LA, Greene M, Jaiswal K, Silva V (2013) GEM building taxonomy version 2.0. GEM Technical Report 2013-02 V1.0.0. Pavia, IT: GEM Foundation, p 188

  • Calvi GM, Pinho R, Magenes G, Bommer JJ, Restrepo-Vélez LF, Crowley H (2006) Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J Earthq Technol 43(3):75–104

    Google Scholar 

  • Cardona OD, Ordaz MG, Reinoso E, Yamín LE, Barbat AH (2012) CAPRA—Comprehensive approach to probabilistic risk assessment: international initiative for risk management effectiveness. In: proceedings of 15WCEE, Lisbon

  • Casotto C, Silva V, Crowley H, Nascimbene R, Pinho R (2015) Seismic fragility of Italian RC precast industrial structures. Eng Struct 94:122–136. https://doi.org/10.1016/j.engstruct.2015.02.034

    Article  Google Scholar 

  • D’Ayala D, Meslem A, Vamvatsikos D, Porter K, Rossetto T (2015) GEM Guidelines for analytical vulnerability assessment of low/mid-rise buildings

  • Eads L, Miranda E, Lignos DG (2015) Average spectral acceleration as an intensity measure for collapse risk assessment. Earthq Eng Struct Dynam 44(12):2057–2073

    Article  Google Scholar 

  • FEMA (2009) FEMA P695-Quantification of building seismic performance factors, Washington (DC): Federal Emergency Management Agency

  • Field EH, Jordan TH, Cornell CA (2003) OpenSHA: a developing community-modeling environment for seismic hazard analysis. Seismol Res Lett 74(4):406–419. https://doi.org/10.1785/gssrl.74.4.406

    Article  Google Scholar 

  • Formisano A, Marzo A (2017) Simplified and refined methods for seismic vulnerability assessment and retrofitting of an Italian cultural heritage masonry building. Comput Struct 180:13–26. https://doi.org/10.1016/j.compstruc.2016.07.005

    Article  Google Scholar 

  • Gokkaya BU, Baker JW, Deierlein GG (2016) Quantifying the impacts of modeling uncertainties on the seismic drift demands and collapse risk of buildings with implications on seismic design checks. Earthq Eng Struct Dynam 45(10):1661–1683. https://doi.org/10.1002/eqe.2740

    Article  Google Scholar 

  • Jalayer F, De Risi R, Manfredi G (2015) Bayesian cloud analysis: efficient structural fragility assessment using linear regression. Bull Earthq Eng 13(4):1183–1203. https://doi.org/10.1007/s10518-014-9692-z

    Article  Google Scholar 

  • Kohrangi M, Kotha SR, Bazzurro P (2018) Ground-motion models for average spectral acceleration in a period range: direct and indirect methods. Bull Earthq Eng 16(1):45–65. https://doi.org/10.1007/s10518-017-0216-5

    Article  Google Scholar 

  • Luco N, Cornell CA (2007) Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthq Spectra 23(2):357–392. https://doi.org/10.1193/1.2723158

    Article  Google Scholar 

  • Lutz M (2006) Programming Python. In: 3rd (ed) Sebastopol CA: O’Reilly. xlii, p 1551

  • Luzi L, Puglia R, Russo E, D’Amico M, Felicetta C, Pacor F, Lanzano G, Çeken U, Clinton J, Costa G, Duni L, Farzanegan E, Gueguen P, Ionescu C, Kalogeras I, Özener H, Pesaresi D, Sleeman R, Strollo A, Zare M (2016) The engineering strong-motion database: a platform to access pan-European accelerometric data. Seismol Res Lett 87(4):987–997. https://doi.org/10.1785/0220150278

    Article  Google Scholar 

  • Luzi L, Lanzano G, Felicetta C, D’Amico MC, Russo E, Sgobba S, Pacor F and ORFEUS Working Group 5 (2020) Engineering strong motion database (ESM) (Version 2.0). Ist Naz Geofis Vulcanol (INGV) https://doi.org/10.13127/ESM

  • Maio R, Tsionis G (2016) Seismic fragility curves for the European building stock: review and evaluation of existing fragility curves, EUR 27635 EN

  • Martins L, Silva V (2020) Development of a fragility and vulnerability model for global seismic risk analyses. Bull Earthq Eng. https://doi.org/10.1007/s10518-020-00885-1

    Article  Google Scholar 

  • McKenna F, Fenves G, Scott M, Jeremic B (2000) Open system for earthquake engineering simulation (OpenSees). University of California, Berkeley, CA, Pacific Earthquake Engineering Research Center

    Google Scholar 

  • Pagani M, Monelli D, Weatherill G, Danciu L, Crowley H, Silva V, Henshaw P, Butler L, Nastasi M, Panzeri L, Simionato M, Vigano D (2014) OpenQuake engine: an open hazard (and Risk) software for the global earthquake model. Seismol Res Lett 85(3):692–702. https://doi.org/10.1785/0220130087

    Article  Google Scholar 

  • Romão X, Castro JM, Pereira N, Crowley H, Silva V, Martins L, Rodrigues D (2020a) European physical vulnerability models. SERA deriverable D-26.5

  • Romão X, Pereira N, Castro JM, De Maio F, Crowley H, Silva V, Martins L (2020b) European building vulnerability data repository (Version v1.1). https://doi.org/10.5281/zenodo.4087810

  • Rossetto T, Gehl P, Minas S, Galasso C, Duffour P, Douglas J, Cook O (2016) FRACAS: a capacity spectrum approach for seismic fragility assessment including record-to-record variability. Eng Struct 125:337–348. https://doi.org/10.1016/j.engstruct.2016.06.043

    Article  Google Scholar 

  • Rossetto T, Ioannou I, Grant D, Maqsood T (2014) Guidelines for empirical vulnerability assessment, GEM Technical Report 2014-08 V1.0.0, Global Earthquake Model Foundation, Pavia, Italy https://doi.org/10.13140/2.1.1173.4407

  • Shome N, Cornell CA (1999) Probabilistic seismic demand analysis of nonlinear structures, Technical Report RMS-35, Stanford University

  • Silva V (2019) Uncertainty and correlation in seismic vulnerability functions of building classes. Earthq Spectra. https://doi.org/10.1193/013018eqs031m

    Article  Google Scholar 

  • Silva V, Crowley H, Pinho R, Varum H (2013) Extending displacement-based earthquake loss assessment (DBELA) for the computation of fragility curves. Eng Struct 56:343–356. https://doi.org/10.1016/j.engstruct.2013.04.023

    Article  Google Scholar 

  • Silva V, Crowley H, Varum H, Pinho R (2014a) Seismic risk assessment for mainland Portugal. Bull Earthq Eng. https://doi.org/10.1007/s10518-014-9630-0

    Article  Google Scholar 

  • Silva V, Crowley H, Varum H, Pinho R, Sousa L (2014b) Investigation of the characteristics of Portuguese regular moment-frame RC buildings and development of a vulnerability model. Bull Earthq Eng. https://doi.org/10.1007/s10518-014-9669-y

    Article  Google Scholar 

  • Silva V, Akkar S, Baker J, Bazzurro P, Castro JM, Crowley H, Dolsek M, Galasso C, Lagomarsino S, Monteiro R, Perrone D, Pitilakis K, Vamvatsikos D (2019a) Current challenges and future trends in analytical fragility and vulnerability modeling. Earthq Spectra 35(4):1927–1952. https://doi.org/10.1193/042418EQS101O

    Article  Google Scholar 

  • Silva V, Amo-Oduro D, Calderon A, Costa C, Dabbeek J, Despotaki V, Martins L, Pagani M, Rao A, Simionato M, Viganò D, Yepes-Estrada C, Acevedo A, Crowley H, Horspool N, Jaiswal K, Journeay M, Pittore M (2019b) Development of a global seismic risk model. Earthq Spectra. https://doi.org/10.1177/8755293019899953

    Article  Google Scholar 

  • Stafford PJ (2008) Conditional prediction of absolute durations short note. Bull Seismol Soc Am 98(3):1588–1594. https://doi.org/10.1785/0120070207

    Article  Google Scholar 

  • Strasser FO, Bommer JJ, Sesetyan K, Erdik M, Cagnan Z, Irizarry J, Goula X, Lucantoni A, Sabetta F, Bal I, Crowley H, Lindholm C (2008) A comparative study of European earthquake loss estimation tools for an earthquake scenario in Istanbul. J Earthq Eng 12(S2):246–256

    Article  Google Scholar 

  • Vamvatsikos D (2011) Software—earthquake, steel dynamics and probability, viewed January 2021. http://users.ntua.gr/divamva/software.html

  • Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthq Eng Struct Dynam 31(3):491–514. https://doi.org/10.1002/eqe.141

    Article  Google Scholar 

  • Vamvatsikos D, Cornell CA (2006) Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA. Earthq Eng Struct Dynam 35(9):1097–1117. https://doi.org/10.1002/eqe.573

    Article  Google Scholar 

  • Yepes-Estrada C, Silva V, Rossetto T, D’Ayala D, Ioannou I, Meslem A, Crowley H (2016) The global earthquake model physical vulnerability database. Earthq Spectra 32(4):2567–2585. https://doi.org/10.1193/011816eqs015dp

    Article  Google Scholar 

  • Zhang Y (2019) Post-earthquake performance assessment and decision-making for tall buildings: integrating statistical modeling, machine learning, stochastic simulation and optimization. UCLA. Retrieved from https://escholarship.org/uc/item/06v5h2x3

  • Zhu M, McKenna F, Scott MH (2018) OpenSeesPy: python library for the OpenSees finite element framework. SoftwareX 7:6–11. https://doi.org/10.1016/j.softx.2017.10.009

    Article  Google Scholar 

Download references

Acknowledgements

The work presented herein has received funding from the European Union’s Horizon 2020 research and innovation program through the research project “RISE” Real-time Earthquake Risk Reduction for a Resilient Europe, under grant agreement No 821115. The authors would like to express their gratitude Prof. Dimitrios Vamvatsikos and Prof. Jack Baker for their valuable comments and remarks that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Martins.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, L., Silva, V., Crowley, H. et al. Vulnerability modellers toolkit, an open-source platform for vulnerability analysis. Bull Earthquake Eng 19, 5691–5709 (2021). https://doi.org/10.1007/s10518-021-01187-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-021-01187-w

Keywords

Navigation