Skip to main content
Log in

Dean migration of unfocused micron sized particles in low aspect ratio spiral microchannels

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We present an analysis of the microfluidic Dean migration of 2.5 µm particles, which do not meet focus criterion, in tall and low aspect ratio microchannels. We demonstrate the use of such low aspect ratio and tall spirals (h > 50 µm) for isolating high concentration (> 106 particles or cells/mL) micron sized particles without an initial off-chip dilution step. We specifically show the need for a sheath fluid for isolation and systematically analyze the particle stream profile (i.e. thickness and distance from the channel wall) as a function of downstream channel length and curvature ratio, with changes in the fluid velocity and the flow rate ratio of particles to sheath fluid (FRR). We also show that the width of the particle stream can control the particle migration and that a threshold stream width and Dean drag is necessary to initiate the particle stream migration from the channel wall. We then propose a design guide based on the selection of optimum curvatures, flow velocities and the FRRs required for achieving a narrow particle stream through a particular outlet. Finally, we use the design guide to demonstrate the isolation of bacteria from bladder epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • H. Amini, W. Lee, D. Di Carlo, Inertial Microfluidic Physics Lab Chip 14, 2739–2761 (2014)

    Article  Google Scholar 

  • A.A.S. Bhagat, H.W. Hou, L.D. Li, C.T. Lim, J. Han, Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11, 1870–1878 (2011)

    Article  Google Scholar 

  • A.A.S. Bhagat, S.S. Kuntaegowdanahalli, N. Kaval, C.J. Seliskar, I. Papautsky, Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed Microdevices 12, 187–195 (2010). https://doi.org/10.1007/s10544-009-9374-9

    Article  Google Scholar 

  • A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8, 1906–1914 (2008a). https://doi.org/10.1039/b807107a

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008b) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration Phys Fluids 20 https://doi.org/10.1063/1.2998844

  • Burke JM, Zubajlo RE, Smela E, White IM (2014) High-throughput particle separation and concentration using spiral inertial filtration Biomicrofluidics 8

  • Y.-S. Choi, K.-W. Seo, S.-J. Lee, Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab Chip 11, 460–465 (2011). https://doi.org/10.1039/c0lc00212g

    Article  Google Scholar 

  • D. Di Carlo, Inertial Microfluidics Lab Chip 9, 3038–3046 (2009). https://doi.org/10.1039/b912547g

    Article  Google Scholar 

  • Guan G et al. (2013) Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation Sci Rep 3 https://doi.org/10.1038/srep01475

  • Hasni AE, Göbbels K, Thiebes AL, P. Bräunig, W. Mokwa, Schnakenberg U (2011) Focusing and Sorting of Particles in Spiral Microfluidic Channels Proceedia Engineer 25:1197 – 1200

  • K. Hood, S. Lee, M. Roper, Inertial migration of a rigid sphere in three-dimensional Poiseuille flow. J Fluid Mech 765, 452–479 (2015). https://doi.org/10.1017/jfm.2014.739

    Article  MathSciNet  MATH  Google Scholar 

  • H.W. Hou, R.P. Bhattacharyya, D.T. Hung, J. Han, Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics. Lab Chip 15, 2297–2307 (2015)

    Article  Google Scholar 

  • Hou HW et al. (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces Sci Rep 3 https://doi.org/10.1038/srep01259

  • C.-S. Hung, K.W. Dodson, S.J. Hultgren, A murine model of urinary tract infection. Nat Protoc 4, 1230–1243 (2009). https://doi.org/10.1038/nprot.2009.116

    Article  Google Scholar 

  • I.D. Johnston, M.B. McDonnell, C.K.L. Tan, D.K. McCluskey, M.J. Davies, M.C. Tracey, Dean Flow Focusing and Separation of Small Microspheres within a Narrow Size Range Microfluid Nanofluid 17, 509–518 (2014). https://doi.org/10.1007/s10404-013-1322-6

    Article  Google Scholar 

  • E.W.M. Kemna, R.M. Schoeman, F. Wolbers, I. Vermes, D.A. Weitz, Berg Avd. High-Yield Cell Ordering and Deterministic Cell-in-Droplet Encapsulation Using Dean Flow in a Curved Microchannel Lab Chip 12, 2881–2887 (2012). https://doi.org/10.1039/C2LC00013J

    Article  Google Scholar 

  • Khoo BL et al. (2014) Clinical Validation of an Ultra High-Throughput Spiral Microfluidics for the Detection and Enrichment of Viable Circulating Tumor Cells PLOS One 9 https://doi.org/10.1371/journal.pone.0099409

  • Kim TH, Yoon HJ, Stella P, Nagrath S (2014) Cascaded spiral microfluidic device for deterministic and high purity continuous separation of circulating tumor cells Biomicrofluidics 8 https://doi.org/10.1063/1.4903501

  • S.S. Kuntaegowdanahalli, A.A.S. Bhagat, G. Kumar, I. Papautsky, Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9, 2973–2980 (2009). https://doi.org/10.1039/b908271a

    Article  Google Scholar 

  • J.-H. Lee, S.-K. Lee, J.-H. Kim, J.-H. Park, Separation of Particles with Bacterial Size Range Using the Control Ofsheath Flow Ratio in Spiral Microfluidic Channel Sensor Actuat A-Phys 286, 211–219 (2019)

    Google Scholar 

  • W.C. Lee, A.A.S. Bhagat, S. Huang, K.J.V. Vliet, J. Han, C.T. Lim, High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11, 1359–1367 (2011). https://doi.org/10.1039/c0lc00579g

    Article  Google Scholar 

  • A.J. Mach, J.H. Kim, A. Arshi, S.C. Hur, D. Di Carlo, Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip 11, 2827–2834 (2011). https://doi.org/10.1039/c1lc20330d

    Article  Google Scholar 

  • Martel JM, Toner M (2012) Inertial focusing dynamics in spiral microchannels Phys Fluids 24

  • Martel JM, Toner M (2013) Particle Focusing in Curved Microfluidic Channels Sci Rep 3 https://doi.org/10.1038/srep03340

  • J.M. Martel, M. Toner, Inertial Focusing in Microfluidics. Annu Rev Biomed Eng 16, 371–396 (2014)

    Article  Google Scholar 

  • Nivedita N, Ligrani P, Papautsky I (2017) Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels Sci Rep 7

  • Nivedita N, Papautsky I (2013) Continuous separation of blood cells in spiral microfluidic devices Biomicrofluidics 7

  • Russom A, Gupta AK, Nagrath S, Di Carlo D, Edd JF, Toner M (2009) Differential inertial focusing of particles in curved low-aspect-ratio microchannels New J Phys 11 https://doi.org/10.1088/1367-2630/11/7/075025

  • Seo J, Lean MH, Kole A (2007) Membrane-free microfiltration by asymmetric inertial migration Appl Phys Lett 91 https://doi.org/10.1063/1.2756272

  • Shields WI, C., Reyes CD, Lopez GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation Lab Chip https://doi.org/10.1039/C4LC01246A

  • A.P. Sudarsan, V.M. Ugaz, Multivortex Micromixing Proc Natl Acad Sci USA 103, 7228–7233 (2006)

    Article  Google Scholar 

  • J. Sun et al., Double spiral microchannel for label-free tumor cell separation and enrichment. Lab Chip 12, 3952–3960 (2012)

    Article  Google Scholar 

  • Sun J, Liu C, Li M, Wang J, Xianyu Y, Hu G, Jiang X (2013) Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels Biomicrofluidics 7

  • Tay HM et al. (2017) Rapid purification of sub-micrometer particles for enhanced drug release and microvesicles isolation NPG Asia Materials 9 https://doi.org/10.1038/am.2017.175

  • Warkiani ME, Khoo BL, Wu L, Tay AKP, Bhagat AAS, Han J, Lim CT (2016) Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics Nat Protoc 11:134–148 https://doi.org/10.1038/nprot.2016.003

  • N. Xiang, K. Chen, Q. Dai, D. Jiang, D. Sun, Z. Ni, Inertia-Induced Focusing Dynamics of Microparticles throughout a Curved Microfluidic Channel Microfluid Nanofluid 18, 29–39 (2015). https://doi.org/10.1007/s10404-014-1395-x

    Article  Google Scholar 

  • N. Xiang, K. Chen, D. Sun, S. Wang, H. Yi, Z. Ni, Quantitative Characterization of the Focusing Process and Dynamic Behavior of Differently Sized Microparticles in a Spiral Microchannel Microfluid Nanofluid 14, 89–99 (2013)

    Google Scholar 

  • Zhao D, He Z, Wang G, Wang H, Zhang Q, Li Y (2016) A novel efficient ZnO/Zn(OH)F nanofiber arrays-based versatile microfluidic system for the applications of photocatalysis and histidine-rich protein separation Sensors and Actuators B: Chemical 229:281–287 https://doi.org/10.1016/j.snb.2016.01.125

  • J. Zhou, I. Papautsky, Resolving Dynamics of Inertial Migration in Straight and Curved Microchannels by Direct Cross-Sectional Imaging Biomicrofluidics 15, 014101 (2021). https://doi.org/10.1063/5.0032653

    Article  Google Scholar 

  • J. Zhou, Z. Peng, I. Papautsky, Mapping Inertial Migration in the Cross Section of a Microfluidic Channel with High-Speed Imaging Microsystems & Nanoengineering 6, 105 (2020). https://doi.org/10.1038/s41378-020-00217-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the research funding from the Singapore Ministry of Education Academic Research Fund Tier 2 (MOE2019-T2-1-116) and Tier 1 (R279-000-539-114) for the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhanya Duraiswamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 57783 KB)

Supplementary file2 (DOCX 1630 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraiswamy, S., Yung, L. Dean migration of unfocused micron sized particles in low aspect ratio spiral microchannels. Biomed Microdevices 23, 40 (2021). https://doi.org/10.1007/s10544-021-00575-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00575-y

Keywords

Navigation