Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interlayer electronic coupling on demand in a 2D magnetic semiconductor

Abstract

When monolayers of two-dimensional (2D) materials are stacked into van der Waals structures, interlayer electronic coupling can introduce entirely new properties, as exemplified by recent discoveries of moiré bands that host highly correlated electronic states and quantum dot-like interlayer exciton lattices. Here we show the magnetic control of interlayer electronic coupling, as manifested in tunable excitonic transitions, in an A-type antiferromagnetic 2D semiconductor CrSBr. Excitonic transitions in bilayers and above can be drastically changed when the magnetic order is switched from the layered antiferromagnetic ground state to a field-induced ferromagnetic state, an effect attributed to the spin-allowed interlayer hybridization of electron and hole orbitals in the latter, as revealed by Green’s function–Bethe–Salpeter equation (GW-BSE) calculations. Our work uncovers a magnetic approach to engineer electronic and excitonic effects in layered magnetic semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and optical properties of CrSBr.
Fig. 2: Excitons coupled to magnetic order.
Fig. 3: Magnetic order-dependent band structure and excitonic transitions.
Fig. 4: Magnetic order-dependent excitons in four-layer CrSBr.

Similar content being viewed by others

Data availability

All relevant data are available in the main text, in the Supporting Information, or from the authors. These include all panels in Figs. 14 in the main text, Supplementary Figs. 19 in the Supporting Information and optimized atomic coordinates used in electronic structure calculations. There is no restriction on data availability.

References

  1. Mak, K., Lee, C., Hone, J., Shan, J. & Heinz, T. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  2. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  3. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  4. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  Google Scholar 

  5. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  CAS  Google Scholar 

  6. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  CAS  Google Scholar 

  7. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  CAS  Google Scholar 

  8. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  CAS  Google Scholar 

  9. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  Google Scholar 

  10. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  CAS  Google Scholar 

  11. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article  CAS  Google Scholar 

  12. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  CAS  Google Scholar 

  13. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  CAS  Google Scholar 

  14. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Article  CAS  Google Scholar 

  15. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  CAS  Google Scholar 

  16. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article  CAS  Google Scholar 

  17. Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 16, 52–57 (2021).

    Article  CAS  Google Scholar 

  18. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  CAS  Google Scholar 

  19. Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

    Article  CAS  Google Scholar 

  20. Huang, B. et al. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol. 15, 212–217 (2020).

    Article  CAS  Google Scholar 

  21. Li, J. et al. Magnetically controllable topological quantum phase transitions in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 100, 121103 (2019).

    Article  CAS  Google Scholar 

  22. Göser, O., Paul, W. & Kahle, H. G. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 92, 129–136 (1990).

    Article  Google Scholar 

  23. Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    Article  CAS  Google Scholar 

  24. Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).

    Article  CAS  Google Scholar 

  25. Guo, Y., Zhang, Y., Yuan, S., Wang, B. & Wang, J. Chromium sulfide halide monolayers: intrinsic ferromagnetic semiconductors with large spin polarization and high carrier mobility. Nanoscale 10, 18036–18042 (2018).

    Article  CAS  Google Scholar 

  26. Wang, C. et al. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X=Cl, Br, I; C=S, Se, Te). Sci. Bull. 64, 293–300 (2019).

    Article  CAS  Google Scholar 

  27. Wang, H., Qi, J. & Qian, X. Electrically tunable high Curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett. 117, 83102 (2020).

    Article  CAS  Google Scholar 

  28. Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 21001 (2018).

    Article  CAS  Google Scholar 

  29. Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).

    Article  CAS  Google Scholar 

  30. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  CAS  Google Scholar 

  31. Beck, J. Über Chalkogenidhalogenide des Chroms Synthese, Kristallstruktur und Magnetismus von Chromsulfidbromid, CrSBr. Z. für Anorg. und Allg. Chem. 585, 157–167 (1990).

    Article  CAS  Google Scholar 

  32. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  33. Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  34. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B. 34, 5390 (1986).

    Article  CAS  Google Scholar 

  35. Deslippe, J. et al. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).

    Article  CAS  Google Scholar 

  36. Felipe, H., Qiu, D. Y. & Louie, S. G. Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality. Phys. Rev. B. 95, 35109 (2017).

    Article  Google Scholar 

  37. Deslippe, J., Samsonidze, G., Jain, M., Cohen, M. L. & Louie, S. G. Coulomb-hole summations and energies for GW calculations with limited number of empty orbitals: a modified static remainder approach. Phys. Rev. B. 87, 165124 (2013).

    Article  Google Scholar 

  38. Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B. 62, 4927 (2000).

    Article  CAS  Google Scholar 

  39. Wu, M., Li, Z., Cao, T. & Louie, S. G. Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nat. Commun. 10, 2371 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The temperature-dependent PL measurements were supported by the US Air Force Office of Scientific Research grant no. FA9550-18-1-0020 (to X.-Y.Z. and X.R.). Magneto-optical spectroscopy measurements are mainly supported by the US Department of Energy (DoE), Basic Energy Sciences (BES) under award no. DE-SC0018171. Synthesis, structural characterization and polarization-resolved PL measurements of CrSBr is supported by the Center on Programmable Quantum Materials, an Energy Frontier Research Center funded by the DoE, Office of Science, BES, under award no. DE-SC0019443 (to X.-Y.Z., X.X. and X.R.). Computational resources were provided by Hyak at UW. J.F. and K.X. acknowledge the Graduate Fellowship from Clean Energy Institute funded by the State of Washington. T.C. acknowledges support from the Micron Foundation. X.-Y.Z. acknowledges partial support for laser equipment by the Vannevar Bush Faculty Fellowship through the Office of Naval Research grant no. N00014-18-1-2080.

Author information

Authors and Affiliations

Authors

Contributions

X.-Y.Z., X.X., K.L. and N.P.W. conceived this work. Bulk crystals were synthesized and characterized by A.H.D. and E.J.T. with supervision by X.R. and C.D. Sample preparation was carried out by K.L. and A.H.D., assisted by N.P.W. and J.C. Temperature-dependent measurements were performed by K.L. with supervision from X.-Y.Z. Field-dependent and polarization-dependent measurements were performed by N.P.W. and J.C. with supervision from X.X. The vector magnet was operated by J.F., K.X., S.S. and T.C. performed first-principles calculations that interpreted the results. The manuscript was prepared by N.P.W., K.L., J.C., K.X., T.C., X.X. and X.-Y.Z. in consultation with all other authors. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Ting Cao, Xavier Roy, Xiaodong Xu or Xiaoyang Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Libai Huang, Sufei Shi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Method and Data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, N.P., Lee, K., Cenker, J. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021). https://doi.org/10.1038/s41563-021-01070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01070-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing