Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

CHEMICAL RECYCLING

Low strain, more gain

Recycling polymers to their monomers would enable a circular polymer economy, but this can be challenging, especially for materials with all-carbon backbones. Now, by lowering the strain of cyclooctene through ring fusion, recyclable polymers with useful physical properties can be made by an olefin-metathesis-based route.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dihedral angle distortion drives ring strain energy.
Fig. 2: Mechanical properties.

References

  1. The New Plastics Economy: Rethinking The Future of Plastics & Catalysing Action. (Ellen MacArthur Foundation, 2017); https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics-catalysing-action

  2. Parker, L. Global treaty to regulate plastic pollution gains momentum. National Geographic https://www.nationalgeographic.com/environment/article/global-treaty-to-regulate-plastic-pollution-gains-momentum (2021).

  3. Kosloski-Oh, S. C., Wood, Z. A., Manjarrez, Y., de los Rios, J. P. & Fieser, M. E. Mater. Horiz. 8, 1084–1129 (2021).

    Article  CAS  Google Scholar 

  4. Vollmer, I. et al. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    Article  CAS  Google Scholar 

  5. Coates, G. W. & Getzler, Y. D. Y. L. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  6. Sathe, D. et al. Nat. Chem. https://doi.org/10.1038/s41557-021-00748-5 (2021).

  7. Martinez, H., Ren, N., Matta, M. E. & Hillmyer, M. A. Polym. Chem. 5, 3507–3532 (2014).

    Article  CAS  Google Scholar 

  8. Neary, W. J. & Kennemur, J. G. ACS Macro Lett. 8, 46–56 (2019).

    Article  CAS  Google Scholar 

  9. Scherman, O. A., Walker, R. & Grubbs, R. H. Macromolecules 38, 9009–9014 (2005).

    Article  CAS  Google Scholar 

  10. Hsu, T.-G. et al. J. Am. Chem. Soc. 142, 2100–2104 (2020).

    Article  CAS  Google Scholar 

  11. Fagnani, D. E. et al. ACS Macro Lett. 10, 41–53 (2021).

    Article  CAS  Google Scholar 

  12. Vora, N. et al. Sci. Adv. 7, eabf0187 (2021).

    Article  CAS  Google Scholar 

  13. Christensen, P. R., Scheuermann, A. M., Loeffler, K. E. & Helms, B. A. Nat. Chem. 11, 442–448 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutan Getzler.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getzler, Y. Low strain, more gain. Nat. Chem. 13, 719–721 (2021). https://doi.org/10.1038/s41557-021-00759-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00759-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing