Skip to main content
Log in

A comparative study of clay enriched polymer solutions for effective carbon storage and utilization (CSU) in saline reservoirs

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, a comparative study of polymeric (Xanthan Gum, XG and polyacrylamide, PAM) clay nanofluids has been explored for increasing CO2 retention and storage efficacy in a synthesized porous media prepared using sand grains of uniform size (200–380 µm). The clay nanofluids were extensively characterized to establish the average particle size of suspended NP clusters (with and without 4 wt% sodium chloride, NaCl) and viscosity at test temperatures (30–90 °C). The inclusion of salt promoted rapid agglomeration of NPs leading to the formation of large size NP clusters of size 1124–1480 nm (an increase in 3–fourfold). Nanofluids exhibited shear-thinning nature while increasing NP concentration caused an increase in nanofluid viscosity. The carbon retention studies were performed in sand-packs by injecting gas slug behind water and nanofluid to establish the duration of time to breakthrough and the amount of carbon retained before breakthrough. Since the gas injection rate was 1 ml/min, the time to breakthrough also denotes the amount of gas retained inside the sand-pack (before breakthrough). With both polymers (PAM and XG), viscous fingering with insufficient CO2 storage (42–44 ml) was observed. However, clay nanofluids suggested higher volume of CO2 storage (63–101 ml) in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jenkins CR, Cook PJ, Ennis-King J et al (2012) Safe storage and effective monitoring of CO2 in depleted gas fields. Proc Natl Acad Sci U S A 109:E35–E41

    Article  CAS  PubMed  Google Scholar 

  2. Zhao P, Xie L, He B, Liu J (2020) Strategy optimization on industrial CO2 sequestration in the depleted Wufeng-Longmaxi Formation Shale in the Northeastern Sichuan Basin, SW China: from the perspective of environment and energy. ACS Sustain Chem Eng 8:11435–11445

    Article  CAS  Google Scholar 

  3. Anderson TR, Hawkins E, Jones PD (2016) CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 40:178–187

    Article  PubMed  Google Scholar 

  4. Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443

    Article  CAS  Google Scholar 

  5. Celia MA, Bachu S, Nordbotten JM, Bandilla KW (2015) Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour Res 51:6846–6892

    Article  CAS  Google Scholar 

  6. Mohagheghian E, Hassanzadeh H, Chen Z (2019) CO2 sequestration coupled with enhanced gas recovery in shale gas reservoirs. J CO2 Util 34:646–655

  7. Schrag DP (2007) Preparing to capture carbon. Science 80(315):812–813

    Article  CAS  Google Scholar 

  8. Gough C (2008) State of the art in carbon dioxide capture and storage in the UK: an experts’ review. Int J Greenh Gas Control 2:155–168

    Article  CAS  Google Scholar 

  9. Ali M, Arif M, Sahito MF et al (2019) CO2-wettability of sandstones exposed to traces of organic acids: implications for CO2 geo-storage. Int J Greenh Gas Control 83:61–68

    Article  CAS  Google Scholar 

  10. Teng Y, Zhang D (2018) Long-term viability of carbon sequestration in deep-sea sediments. Sci Adv 4:6588

    Article  CAS  Google Scholar 

  11. Dongre HJ, Thakre N, Palodkar AV, Jana AK (2020) Carbon dioxide hydrate growth dynamics and crystallography in pure and saline water. Cryst Growth Des 20:7129–7140

    Article  CAS  Google Scholar 

  12. Chaturvedi KR, Trivedi J, Sharma T (2020) Single-step silica nanofluid for improved carbon dioxide flow and reduced formation damage in porous media for carbon utilization. Energy 197:117276

  13. Xu X, Saeedi A, Liu K (2016) Bulk phase Behavior and displacement performance of CO2 foam induced by a combined foaming formulation. J Pet Sci Eng 147:864–872

    Article  CAS  Google Scholar 

  14. Farhadi H, Riahi S, Ayatollahi S, Ahmadi H (2016) Experimental study of nanoparticle-surfactant-stabilized CO2 foam: stability and mobility control. Chem Eng Res Des 111:449–460

    Article  CAS  Google Scholar 

  15. Abid K, Gholami R, Elochukwu H et al (2018) A methodology to improve nanosilica based cements used in CO2 sequestration sites. Petroleum 4:198–208

    Article  Google Scholar 

  16. Bisweswar G, Al-Hamairi A, Jin S (2019) Carbonated water injection: an efficient EOR approach. A review of fundamentals and prospects. J Pet Explor Prod Technol 10:673–685

    Article  CAS  Google Scholar 

  17. Ali M, Awan FUR, Ali M et al (2021) Effect of humic acid on CO2-wettability in sandstone formation. J Colloid Interface Sci 588:315–325

    Article  CAS  PubMed  Google Scholar 

  18. Al-Anssari S, Barifcani A, Wang S et al (2016) Wettability alteration of oil-wet carbonate by silica nanofluid. J Colloid Interface Sci 461:435–442

    Article  CAS  PubMed  Google Scholar 

  19. Ali M, Al-Anssari S, Shakeel M, et al (2017) Influence of miscible CO2 flooding on wettability and asphaltene precipitation in Indiana Lime Stone. In: Society of Petroleum Engineers - SPE/IATMI Asia Pacific Oil and Gas Conference and Exhibition 2017. Society of Petroleum Engineers, pp 17–19

  20. Al-Anssari S, Arif M, Wang S et al (2017) Wettability of nano-treated calcite/CO2/brine systems: implication for enhanced CO2 storage potential. Int J Greenh Gas Control 66:97–105

    Article  CAS  Google Scholar 

  21. Ali M, Al-Anssari S, Arif M et al (2019) Organic acid concentration thresholds for ageing of carbonate minerals: implications for CO2 trapping/storage. J Colloid Interface Sci 534:88–94

    Article  CAS  PubMed  Google Scholar 

  22. Al-Anssari S, Barifcani A, Keshavarz A, Iglauer S (2018) Impact of nanoparticles on the CO2-brine interfacial tension at high pressure and temperature. J Colloid Interface Sci 532:136–142

    Article  CAS  PubMed  Google Scholar 

  23. Betancur S, Giraldo LJ, Carrasco-Marín F et al (2019) Importance of the Nanofluid preparation for ultra-low interfacial tension in enhanced oil recovery based on surfactant-nanoparticle-brine system interaction. ACS Omega 4:16171–16180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang S, She Y, Gu Y (2011) Evaluation of polymers as direct thickeners for CO2 enhanced oil recovery. J Chem Eng Data 56:1069–1079

    Article  CAS  Google Scholar 

  25. Wang W, Liu Y, Gu Y (2003) Application of a novel polymer system in chemical enchanced oil recovery (EOR). Colloid Polym Sci 281:1046–1054

    Article  CAS  Google Scholar 

  26. Siano DB, Bock J (1986) Viscosity of mixtures of polymers and microemulsions - the Huggins interaction coefficient. Colloid Polym Sci 264:197–203

    Article  CAS  Google Scholar 

  27. Wibowo ADK, Yoshi LA, Handayani AS, Joelianingsih, (2021) Synthesis of polymeric surfactant from palm oil methyl ester for enhanced oil recovery application. Colloid Polym Sci 299:81–92

    Article  CAS  Google Scholar 

  28. Xie K, Cao B, Lu X et al (2019) Matching between the diameter of the aggregates of hydrophobically associating polymers and reservoir pore-throat size during polymer flooding in an offshore oilfield. J Pet Sci Eng 177:558–569

    Article  CAS  Google Scholar 

  29. Talebian SH, Masoudi R, Tan IM, Zitha PLJ (2014) Foam assisted CO2-EOR: a review of concept, challenges, and future prospects. J Pet Sci Eng 120:202–215

    Article  CAS  Google Scholar 

  30. Mohajeri M, Hemmati M, Shekarabi AS (2015) An experimental study on using a nanosurfactant in an EOR process of heavy oil in a fractured micromodel. J Pet Sci Eng 126:162–173

    Article  CAS  Google Scholar 

  31. Hosseini-Nasab SM, Zitha PLJ (2017) Investigation of certain physical–chemical features of oil recovery by an optimized alkali–surfactant–foam (ASF) system. Colloid Polym Sci 295:1873–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bera A, Kumar T, Ojha K, Mandal A (2013) Adsorption of surfactants on sand surface in enhanced oil recovery: isotherms, kinetics and thermodynamic studies. Appl Surf Sci 284:87–99

    Article  CAS  Google Scholar 

  33. Shu G, Dong M, Chen S, Luo P (2014) Improvement of CO2 EOR performance in water-wet reservoirs by adding active carbonated water. J Pet Sci Eng 121:142–148

    Article  CAS  Google Scholar 

  34. Xiong B, Loss RD, Shields D, et al (2018) Polyacrylamide degradation and its implications in environmental systems. npj Clean Water 1:17

  35. Huang B, Hu X, Fu C et al (2020) Effect of a partial pressure tool on improving the heterogeneous oil recovery and polymer solution microstructure. ACS Omega 5:7002–7010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sugar A, Torrealba V, Buttner U, Hoteit H (2020) Assessment of polymer-induced formation damage using microfluidics. In: Proceedings - SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (SPE)

  37. Michaelides EE (2013) Transport properties of nanofluids. A critical review J Non-Equilibrium Thermodyn 38:1–79

    Article  Google Scholar 

  38. Saidur R, Leong KY, Mohammad HA (2011) A review on applications and challenges of nanofluids. Renew Sustain Energy Rev 15:1646–1668

    Article  CAS  Google Scholar 

  39. Sharma T, Iglauer S, Sangwai JS (2016) Silica nanofluids in an oilfield polymer polyacrylamide: interfacial properties, wettability alteration, and applications for chemical enhanced oil recovery. Ind Eng Chem Res 55:12387–12397

    Article  CAS  Google Scholar 

  40. Sharma T, Sangwai JS (2017) Silica nanofluids in polyacrylamide with and without surfactant: viscosity, surface tension, and interfacial tension with liquid paraffin. J Pet Sci Eng 152:575–585

    Article  CAS  Google Scholar 

  41. Hendraningrat L, Li S, Torsæter O (2013) A coreflood investigation of nanofluid enhanced oil recovery. J Pet Sci Eng 111:128–138

    Article  CAS  Google Scholar 

  42. Lan Q, Yang F, Zhang S et al (2007) Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions. Colloids Surfaces A Physicochem Eng Asp 302:126–135

    Article  CAS  Google Scholar 

  43. Chaturvedi KR, Sharma T (2021) Rheological analysis and EOR potential of surfactant treated single-step silica nanofluid at high temperature and salinity. J Pet Sci Eng 196:107704

  44. Wu Y, Chen W, Dai C et al (2017) Reducing surfactant adsorption on rock by silica nanoparticles for enhanced oil recovery. J Pet Sci Eng 153:283–287

    Article  CAS  Google Scholar 

  45. Ahmadi MA, Sheng J (2016) Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles. Pet Sci 13:725–736

    Article  CAS  Google Scholar 

  46. Chaturvedi KR, Sharma T (2021) In-situ formulation of Pickering CO2 foam for enhanced oil recovery and improved carbon storage in sandstone formation. Chem Eng Sci 235:116484

  47. Al-Anssari S, Arif M, Wang S et al (2017) Stabilising nanofluids in saline environments. J Colloid Interface Sci 508:222–229

    Article  CAS  PubMed  Google Scholar 

  48. Songolzadeh R, Moghadasi J (2017) Stabilizing silica nanoparticles in high saline water by using ionic surfactants for wettability alteration application. Colloid Polym Sci 295:145–155

    Article  CAS  Google Scholar 

  49. Babakhani P (2019) The impact of nanoparticle aggregation on their size exclusion during transport in porous media: one- and three-dimensional modelling investigations. Sci Rep 9:14071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sharma T, Kumar GS, Sangwai JS (2015) Comparative effectiveness of production performance of Pickering emulsion stabilized by nanoparticle-surfactant-polymerover surfactant-polymer (SP) flooding for enhanced oil recoveryfor Brownfield reservoir. J Pet Sci Eng 129:221–232

    Article  CAS  Google Scholar 

  51. Cheraghian G, Nezhad SSK (2016) Improvement of heavy oil recovery and role of nanoparticles of clay in the surfactant flooding process. Pet Sci Technol 34:1397–1405

    Article  CAS  Google Scholar 

  52. Chakraborty S, Panigrahi PK (2020) Stability of nanofluid: a review. Appl Therm Eng 174:115259

  53. Chaturvedi KR, Narukulla R, Sharma T (2020) CO2 capturing evaluation of single-step silica nanofluid through rheological investigation for nanofluid use in carbon utilization applications. J Mol Liq 304:112765

  54. Kumar RS, Al-Arbi Ganat T, Sharma T (2021) Performance evaluation of silica nanofluid for sand column transport with simultaneous wettability alteration: an approach to environmental issue. J Clean Prod 303:127047

  55. Zhang Y, Zhao B, Jiang J et al (2016) The use of TiO2 nanoparticles to enhance CO2 absorption. Int J Greenh Gas Control 50:49–56

    Article  CAS  Google Scholar 

  56. Kaszuba M, McKnight D, Connah MT et al (2008) Measuring sub nanometre sizes using dynamic light scattering. J Nanoparticle Res 10:823–829

    Article  CAS  Google Scholar 

  57. Haghtalab A, Mohammadi M, Fakhroueian Z (2015) Absorption and solubility measurement of CO2 in water-based ZnO and SiO2 nanofluids. Fluid Phase Equilib 392:33–42

    Article  CAS  Google Scholar 

  58. Ujjwal RR, Sharma T, Sangwai JS, Ojha U (2017) Rheological investigation of a random copolymer of polyacrylamide and polyacryloyl hydrazide (PAM-ran-PAH) for oil recovery applications. J Appl Polym Sci 134:44648

    Google Scholar 

  59. Sharma T, Kumar GS, Sangwai JS (2015) Viscoelastic properties of oil-in-water (o/w) pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer systems. Ind Eng Chem Res 54:1576–1584

    Article  CAS  Google Scholar 

  60. Chaturvedi KR, Trivedi J, Sharma T (2019) Evaluation of polymer-assisted carbonated water injection in sandstone reservoir: absorption kinetics, rheology, and oil recovery results. Energy Fuels 33:5438–5451

    Article  CAS  Google Scholar 

  61. Chaturvedi KR, Singh AK, Sharma T (2019) Impact of shale on properties and oil recovery potential of sandstone formation for low-salinity waterflooding applications. Asia-Pacific J Chem Eng 14:e2352

  62. Goswami R, Chaturvedi KR, Kumar RS et al (2018) Effect of ionic strength on crude emulsification and EOR potential of micellar flood for oil recovery applications in high saline environment. J Pet Sci Eng 170:49–61

    Article  CAS  Google Scholar 

  63. Chaturvedi KR, Ravilla D, Kaleem W, et al (2021) Impact of low salinity water injection on CO2 storage and oil recovery for improved CO2 utilization. Chem Eng Sci 229:116127

  64. Kumar RS, Sharma T (2018) Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO2-TiO2 nanocomposites for oilfield applications. Colloids Surfaces A Physicochem Eng Asp 539:171–183

    Article  CAS  Google Scholar 

  65. Gosens I, Post JA, de la Fonteyne LJ et al (2010) Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol 7:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Setia H, Gupta R, Wanchoo RK (2013) Stability of nanofluids. Mater Sci Forum 757:139–149

    Article  CAS  Google Scholar 

  67. Kumar RS, Chaturvedi KR, Iglauer S, et al (2020) Impact of anionic surfactant on stability, viscoelastic moduli, and oil recovery of silica nanofluid in saline environment. J Pet Sci Eng 195:107634

  68. Kawale D, Marques E, Zitha PLJ et al (2017) Elastic instabilities during the flow of hydrolyzed polyacrylamide solution in porous media: effect of pore-shape and salt. Soft Matter 13:765–775

    Article  CAS  PubMed  Google Scholar 

  69. Mishra PC, Mukherjee S, Nayak SK, Panda A (2014) A brief review on viscosity of nanofluids. Int Nano Lett 4:109–120

    Article  CAS  Google Scholar 

  70. Lakatos I, Lakatos-Szabó J (1996) Effect of carbon dioxide on rheological properties and structure of polyacrylamide solutions. Colloid Polym Sci 274:959–965

    Article  CAS  Google Scholar 

  71. Arabli V, Aghili A (2015) The effect of silica nanoparticles, thermal stability, and modeling of the curing kinetics of epoxy/silica nanocomposite. Adv Compos Mater 24:561–577

    Article  CAS  Google Scholar 

  72. Hsiue GH, Liu YL, Liao HH (2001) Flame-retardant epoxy resins: an approach from organic-inorganic hybrid nanocomposites. J Polym Sci Part A Polym Chem 39:986–996

    Article  CAS  Google Scholar 

  73. Chaturvedi KR, Narukulla R, Amani M, Sharma T (2021) Experimental investigations to evaluate surfactant role on absorption capacity of nanofluid for CO2 utilization in sustainable crude mobilization. Energy 225:120321

Download references

Acknowledgements

We, most humbly, thank Rajiv Gandhi Institute of Petroleum Technology, Jais for their encouragement and support that have made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Sharma.

Ethics declarations

Conflict of interest

There authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, K.R., Narukulla, R. & Sharma, T. A comparative study of clay enriched polymer solutions for effective carbon storage and utilization (CSU) in saline reservoirs. Colloid Polym Sci 299, 1507–1519 (2021). https://doi.org/10.1007/s00396-021-04868-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04868-9

Keywords

Navigation