Skip to main content
Log in

Thematic and Geographical Trend in Scientific Research Applied in Municipal Wastewater Treatment Plants: an Overview

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Municipal wastewater treatment plants (MWWTPs) are considered essential to protect human health and aquatic systems. However, several studies in the scientific field have identified adverse environmental effects in these treatment units that involve challenges in the water industry. Therefore, this work has the following objectives: (1) to understand the global context in which MWWTPs operate and (2) to determine the thematic and geographic trend in scientific research. Through the “Publish or Perish” software, scientific articles indexed in the Scopus and Google Scholar databases during the period 2000 to 2020 were obtained. Specific terms were used: “Municipal Wastewater Treatment Plants”; “Municipal Wastewater Treatment Plants,” so that all terms must be contained in the title of the document. Categorization was defined according to key concepts considered as adverse effects indicated in the literature and that involve common problems in the water industry at the municipal level. As a result, 1844 documents (papers, reviews, books, book chapters, citations, letters, theses, and conference papers) were retrieved and subjected to a process of refinement (discrimination) where only articles, chapters, conference papers, and reviews were considered. Finally, 800 articles were selected for further content analysis, identifying seven categories and 30 subcategories. The category of “Emerging contaminants” was the most relevant within the research topics, and the category with the least available research was “Air quality.” The articles were also analyzed by economic region, identifying Asia with the largest number of studies on various topics. In conclusion, future research should be oriented towards management, energy, and air quality issues, because they are subjects of little research involving process efficiency, energy savings, and impacts on the quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abeledo-Lameiro, M. J., Ares-Mazas, E., & Gomez-Couso, H. (2018). Use of ultrasound irradiation to inactivate Cryptosporidium parvum oocysts in effluents from municipal wastewater treatment plants. Ultrasonics Sonochemistry, 48, 118–126. https://doi.org/10.1016/j.ultsonch.2018.05.013

    Article  CAS  Google Scholar 

  • Albero, B., Perez, R. A., Sanchez-Brunete, C., & Tadeo, J. L. (2012). Occurrence and analysis of parabens in municipal sewage sludge from wastewater treatment plants in Madrid (Spain). Journal of Hazardous Materials, 239–240, 48–55. https://doi.org/10.1016/j.jhazmat.2012.05.017

    Article  CAS  Google Scholar 

  • Alotaibi, M. K., Barnawi, I., & I. O. (2018). Cytogenetic biomonitoring of almadinah almunawarah municipal wastewater treatment plant using the Allium cepa chromosome aberration assay. Pakistan Journal of Botany, 50(6), 2245–2249.

    CAS  Google Scholar 

  • Amildon, I., Paiva, A. B., Paniagua, E. S., & Trovó, G. (2018). Chloramphenicol photo-Fenton degradation and toxicity changes in both surface water and a tertiary effluent from a municipal wastewater treatment plant at near-neutral conditions. Chemical Engineering Journal, 347, 763–770. https://doi.org/10.1016/j.cej.2018.04.169

    Article  CAS  Google Scholar 

  • Amin, M. M., Hashemi, M., Ebrahimpour, K., & Chavoshani, A. (2019). Determination of parabens in wastewater and sludge in a municipal wastewater treatment plant using microwaveassisted dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry. Environmental Health Engineering and Management, 6(3), 215–224. https://doi.org/10.15171/ehem.2019.24

    Article  CAS  Google Scholar 

  • Anaokar, G., Khambete, A., & Christian, R. (2018). Evaluation of a performance index for municipal wastewater treatment plants using MCDM – TOPSIS. International Journal of Technology, 9(4). https://doi.org/10.14716/ijtech.v9i4.102.

  • Bdour, A. N., Hamdib, M. R., & Tarawneh, Z. (2009). Perspectives on sustainable wastewater treatment technologies and reuse options in the urban areas of the Mediterranean region. Desalination, 237(1–3), 162–174. https://doi.org/10.1016/j.desal.2007.1

    Article  CAS  Google Scholar 

  • Bhatt, P., Mathur, N., Singh, A., Pareek, H., & Bhatnagar, P. (2020). Evaluation of factors influencing the environmental spread of pathogens by wastewater treatment plants. Water, Air, & Soil Pollution, 231(8). https://doi.org/10.1007/s11270-020-04807-4.

  • Brewer, T. F., Shea, P., & Cheng, R. C. (2018). Consider energy-saving options for wastewater treatment plants. Opflow, 44(9), 6–7. https://doi.org/10.1002/opfl.1062

    Article  Google Scholar 

  • Budych-Gorzna, M., Smoczynski, M., & Oleskowicz-Popiel, P. (2016). Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste. Applied Energy, 161, 387–394. https://doi.org/10.1016/j.apenergy.2015.10.007

    Article  CAS  Google Scholar 

  • CAF (2019). Estrategia del agua 2019–2022. Banco de Desarrollo de Amércia Latina: Corporación Andina de Fomento.

  • Caicedo, C., Rosenwinkel, K. H., Exner, M., Verstraete, W., Suchenwirth, R., Hartemann, P., et al. (2019). Legionella occurrence in municipal and industrial wastewater treatment plants and risks of reclaimed wastewater reuse: Review. Water Research, 149, 21–34. https://doi.org/10.1016/j.watres.2018.10.080

    Article  CAS  Google Scholar 

  • Cano, N. A., Gallego, D., Velásquez, H. I., & Ruiz-Mercado, G. J. (2017). Emergy analysis for the sustainable utilization of biosolids generated in a municipal wastewater treatment plant. Journal of Cleaner Production, 141, 182–193. https://doi.org/10.1016/j.jclepro.2016.09.033

    Article  CAS  Google Scholar 

  • Chae, K.-J., & Ren, X. (2016). Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system. Applied Energy, 179, 565–574. https://doi.org/10.1016/j.apenergy.2016.07.021

    Article  CAS  Google Scholar 

  • Chae, K. J., & Kang, J. (2013). Estimating the energy independence of a municipal wastewater treatment plant incorporating green energy resources. Energy Conversion and Management, 75, 664–672. https://doi.org/10.1016/j.enconman.2013.08.028

    Article  Google Scholar 

  • Chen, J., Liu, S., Yan, J., Wen, J., Hu, Y., & Zhang, W. (2017). Intensive removal efficiency and mechanisms of carbon and ammonium in municipal wastewater treatment plant tail water by ozone oyster shells fix-bed bioreactor − membrane bioreactor combined system. Ecological Engineering, 101, 75–83. https://doi.org/10.1016/j.ecoleng.2016.11.029

    Article  Google Scholar 

  • Chen, M. J., Lo, S. L., Lee, Y. C., Kuo, J., & Wu, C. H. (2016). Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide. Journal of Hazardous Materials, 303, 111–118. https://doi.org/10.1016/j.jhazmat.2015.10.011

    Article  CAS  Google Scholar 

  • Clement, R., Gildas, M., & Isabelle, L. (2018). Integration of high-rate DAF technology within a municipal biofiltration plant for the treatment and thickening of backwash wastewaters. Water Practice and Technology, 13(4), 812–820. https://doi.org/10.2166/wpt.2018.091

    Article  Google Scholar 

  • Corrales-Reyes, I. E., Fornaris-Cedeño, Y., & Reyes-Pérez, J. J. (2017). Análisis bibliométrico de la revista investigación en educación médica . Período 2012–2016. Investigación en Educación Médica. https://doi.org/10.1016/j.riem.2017.02.003.

  • Demirbas, A., Edris, G., & Alalayah, W. M. (2017). Sludge production from municipal wastewater treatment in sewage treatment plant. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects, 39(10), 999–1006. https://doi.org/10.1080/15567036.2017.1283551

    Article  CAS  Google Scholar 

  • Dereli, R. K., Clifford, E., & Casey, E. (2020). Co-treatment of leachate in municipal wastewater treatment plants: Critical issues and emerging technologies. Critical Reviews in Environmental Science and Technology, 51(11), 1079–1128. https://doi.org/10.1080/10643389.2020.1745014

    Article  CAS  Google Scholar 

  • Doma, H. S., Abdo, S. M., Mahmoud, R. H., Enin, S. E., & Diwani, G. E. (2016). Production and characterization of biodiesel from microalgae cultivated in municipal wastewater treatment plant. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(2).

  • Dong, Y., He, W., Liang, D., Li, C., Liu, G., Liu, J., et al. (2019). Operation strategy of cubic-meter scale microbial electrochemistry system in a municipal wastewater treatment plant. Journal of Power Sources, 441https://doi.org/10.1016/j.jpowsour.2019.227124

  • Durán-Sánchez, A., Álvarez-García, J., González-Vázquez, E., & Del Río-Rama, M. C. (2020). Wastewater management: Bibliometric analysis of scientific literature. Water, 12(11). https://doi.org/10.3390/w12112963.

  • Ekpeghere, K. I., Lee, J. W., Kim, H. Y., Shin, S. K., & Oh, J. E. (2017). Determination and characterization of pharmaceuticals in sludge from municipal and livestock wastewater treatment plants. Chemosphere, 168, 1211–1221. https://doi.org/10.1016/j.chemosphere.2016.10.077

    Article  CAS  Google Scholar 

  • Filipkowska, Z., Janczukowicz, W., Krzemieniewski, M., & Pesta, J. (2002). Municipal wastewater treatment plant with activated sludge tanks aerated by CELPOX devices as a source of microbiological pollution of the atmosphere. Polish Journal of Environmental Studies, 11(6), 639–648.

    Google Scholar 

  • Fitzsimons, L., Horrigan, M., McNamara, G., Doherty, E., Phelan, T., Corcoran, B., et al. (2016). Assessing the thermodynamic performance of Irish municipal wastewater treatment plants using exergy analysis: A potential benchmarking approach. Journal of Cleaner Production, 131, 387–398. https://doi.org/10.1016/j.jclepro.2016.05.016

    Article  CAS  Google Scholar 

  • Gao, F., Cui, W., Xu, J.-P., Li, C., Jin, W.-H., & Yang, H.-L. (2019). Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant. Renewable Energy, 136, 671–676. https://doi.org/10.1016/j.renene.2019.01.038

    Article  CAS  Google Scholar 

  • Giorgi, S., Reitsma, B. A. H., van Fulpen, H. J. F., Berg, R. W. P., & Bechger, M. (2018). Primary sedimentation as a sustainability measure for newly built municipal wastewater treatment plants: Too expensive? Water Science and Technology, 78(7), 1597–1602. https://doi.org/10.2166/wst.2018.440

    Article  CAS  Google Scholar 

  • Grobelak, A., Grosser, A., Kacprzak, M., & Kamizela, T. (2019). Sewage sludge processing and management in small and medium-sized municipal wastewater treatment plant-new technical solution. Journal of Environmental Management, 234, 90–96. https://doi.org/10.1016/j.jenvman.2018.12.111

    Article  CAS  Google Scholar 

  • Gude, V. G. (2016). Wastewater treatment in microbial fuel cells – An overview. Journal of Cleaner Production, 122, 287–307. https://doi.org/10.1016/j.jclepro.2016.02.022

    Article  CAS  Google Scholar 

  • Guo, Z., Sun, Y., Pan, S. Y., & Chiang, P. C. (2019). Integration of green energy and advanced energy-efficient technologies for municipal wastewater treatment plants. International Journal of Environmental Research and Public Health, 16(7). https://doi.org/10.3390/ijerph16071282.

  • Gyobu, T., Inoue, M., Soda, S., & Ike, M. (2015). Energy content of organics in municipal wastewater treatment streams at Tsumori wastewater treatment plant. Journal of Water and Environment Technology, 13(1), 89–97. https://doi.org/10.2965/jwet.2015.89

    Article  Google Scholar 

  • Hallas, J., Mackowiak, C., Wilkie, A., & Harris, W. (2019). Struvite phosphorus recovery from aerobically digested municipal wastewater. Sustainability, 11(2). https://doi.org/10.3390/su11020376.

  • Hamilton, K. A., Hamilton, M. T., Johnson, W., Jjemba, P., Bukhari, Z., LeChevallier, M., et al. (2018). Health risks from exposure to Legionella in reclaimed water aerosols: Toilet flushing, spray irrigation, and cooling towers. Water Research, 134, 261–279. https://doi.org/10.1016/j.watres.2017.12.022

    Article  CAS  Google Scholar 

  • Hansen, S. B., Padfield, R., Syayuti, K., Evers, S., Zakariah, Z., & Mastura, S. (2015). Trends in global palm oil sustainability research. Journal of Cleaner Production, 100, 140–149. https://doi.org/10.1016/j.jclepro.2015.03.051

    Article  Google Scholar 

  • Hao, R., Li, S., Li, J., & Meng, C. (2013). Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: Operating performance and bacterial community. Bioresource Technology, 143, 178–186. https://doi.org/10.1016/j.biortech.2013.06.001

    Article  CAS  Google Scholar 

  • Harzing, A. W. (2007). Publish or Perish. https://harzing.com/resources/publish-or-perish.

  • He, W., Dong, Y., Li, C., Han, X., Liu, G., Liu, J., et al. (2019). Field tests of cubic-meter scale microbial electrochemical system in a municipal wastewater treatment plant. Water Research, 155, 372–380. https://doi.org/10.1016/j.watres.2019.01.062

    Article  CAS  Google Scholar 

  • Hong, E., Yeneneh, A. M., Sen, T. K., Ang, H. M., & Kayaalp, A. (2018). A comprehensive review on rheological studies of sludge from various sections of municipal wastewater treatment plants for enhancement of process performance. Advances in Colloid and Interface Science, 257, 19–30. https://doi.org/10.1016/j.cis.2018.06.002

    Article  CAS  Google Scholar 

  • Hospido, A., Moreira, M. T., Fernández-Couto, M., & Feijoo, G. (2004). Environmental performance of a municipal wastewater treatment plant. The International Journal of Life Cycle Assessment, 9(4), 261–271. https://doi.org/10.1065/Ica2004.03.150

    Article  Google Scholar 

  • Itzel, F., Baetz, N., Hohrenk, L. L., Gehrmann, L., Antakyali, D., Schmidt, T. C., et al. (2020). Evaluation of a biological post-treatment after full-scale ozonation at a municipal wastewater treatment plant. Water Research, 170, 115316. https://doi.org/10.1016/j.watres.2019.115316

    Article  CAS  Google Scholar 

  • Itzel, F., Gehrmann, L., Bielak, H., Ebersbach, P., Boergers, A., Herbst, H., et al. (2017). Investigation of full-scale ozonation at a municipal wastewater treatment plant using a toxicity-based evaluation concept. Journal of Toxicology and Environmental Health. Part A, 80(23–24), 1242–1258. https://doi.org/10.1080/15287394.2017.1369663

    Article  CAS  Google Scholar 

  • Javid, A. H., Hassani, A. H., Ghanbari, B., & Yaghmaeian, K. (2013). Feasibility of utilizing moving bed biofilm reactor to upgrade and retrofit municipal wastewater treatment plants. Int. J. Environ. Res., 7(4), 963–972. https://doi.org/10.22059/IJER.2013.679

    Article  CAS  Google Scholar 

  • Jia, L., & Hong, Y. (2018). Experimental study on anaerobic digestion of remaining sludge in municipal wastewater treatment plant. Journal of Architectural Research and Development, 2(4).

  • Jin, L., Zhang, G., & Tian, H. (2014). Current state of sewage treatment in China. Water Research, 66, 85–98. https://doi.org/10.1016/j.watres.2014.08.014

    Article  CAS  Google Scholar 

  • Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V., & Kang, S. M. (2019). The state of desalination and brine production: A global outlook. Science of the Total Environment, 657, 1343–1356. https://doi.org/10.1016/j.scitotenv.2018.12.076

    Article  CAS  Google Scholar 

  • Jozwiakowska, K., & Marzec, M. (2020). Efficiency and reliability of sewage purifi cation in long-term exploitation of the municipal wastewater treatment plant with activated sludge and hydroponic system. Archives of Environmental Protection, 46(3), 30–41. https://doi.org/10.24425/aep.2020.134533

    Article  CAS  Google Scholar 

  • Junsheng, L., & Jinlong, Z. (2009). Active sand filter used in municipal wastewater treatment plant for energy saving. Paper presented at the 2009 International Conference on Energy and Environment Technology,

  • Kamble, S., Singh, A., Kazmi, A., & Starkl, M. (2019). Environmental and economic performance evaluation of municipal wastewater treatment plants in India: A life cycle approach. Water Science & Technology, 79(6), 1102–1112. https://doi.org/10.2166/wst.2019.110

    Article  CAS  Google Scholar 

  • Karelid, V., Larsson, G., & Bjorlenius, B. (2017). Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants. Journal of Environmental Management, 193, 491–502. https://doi.org/10.1016/j.jenvman.2017.02.042

    Article  CAS  Google Scholar 

  • Khan, M. A., Ashar, N. N., Ganesh, A. G., Rais, N., Faheem, S. M., & Khan, S. T. (2019). Bacterial community structure in anaerobic digesters of a full scale municipal wastewater treatment plant ‒ Case study of Dubai, United Arab Emirates. Journal of Sustainable Development of Energy, Water and Environment Systems. https://doi.org/10.13044/j.sdewes.d6.0222.

  • Krapivin, V. F., Varotsos, C. A., & Nghia, B. Q. (2017). A modeling system for monitoring water quality in lagoons. Water, Air, & Soil Pollution, 228(10). https://doi.org/10.1007/s11270-017-3581-4.

  • Kumar, N., Singh, J., Bhatia, A., & Kazmi, A. A. (2016). A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment. Water Science and Technology, 73(1), 113–123. https://doi.org/10.2166/wst.2015.466

    Article  CAS  Google Scholar 

  • Laitinen, J., Moliis, K., & Surakka, M. (2017). Resource efficient wastewater treatment in a developing area—Climate change impacts and economic feasibility. Ecological Engineering, 103, 217–225. https://doi.org/10.1016/j.ecoleng.2017.04.017

    Article  Google Scholar 

  • Lei, W., Li, T. T., Lv, N. Q., Liu, H., Zhang, Y., & Xi, B. D. (2019). Study on adsorption of lead by biochar prepared from sludge of municipal wastewater treatment plant. IOP Conference Series: Materials Science and Engineering, 479. https://doi.org/10.1088/1757-899x/479/1/012007

  • Lewkowska, P., Cieslik, B., Dymerski, T., Konieczka, P., & Namiesnik, J. (2016). Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environmental Research, 151, 573–586. https://doi.org/10.1016/j.envres.2016.08.030

    Article  CAS  Google Scholar 

  • Li, W., & Zhao, Y. (2015). Bibliometric analysis of global environmental assessment research in a 20-year period. Environmental Impact Assessment Review, 50, 158–166. https://doi.org/10.1016/j.eiar.2014.09.012

    Article  Google Scholar 

  • Liu, B., Gu, L., Li, Q., Yu, G., Zhao, C., & Zhai, H. (2019). Effect of pre-ozonation-enhanced coagulation on dissolved organic nitrogen in municipal wastewater treatment plant effluent. Environmental Technology, 40(20), 2684–2694. https://doi.org/10.1080/09593330.2018.1449897

    Article  CAS  Google Scholar 

  • Łój-Pilch, M., Zakrzewska, A., & Zielewicz, E. (2019). Risk assessment analysis in a municipal wastewater treatment plant. Proceedings, 16(1). https://doi.org/10.3390/proceedings2019016018.

  • Lorenzo-Toja, Y., Vázquez-Rowe, I., Marín-Navarro, D., Crujeiras, R. M., Moreira, M. T., & Feijoo, G. (2017). Dynamic environmental efficiency assessment for wastewater treatment plants. The International Journal of Life Cycle Assessment, 23(2), 357–367. https://doi.org/10.1007/s11367-017-1316-9

    Article  Google Scholar 

  • Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics, 12(4), 1160–1177. https://doi.org/10.1016/j.joi.2018.09.002

    Article  Google Scholar 

  • Mattioli, A., Gatti, G. B., Mattuzzi, G. P., Cecchi, F., & Bolzonella, D. (2017). Co-digestion of the organic fraction of municipal solid waste and sludge improves the energy balance of wastewater treatment plants: Rovereto case study. Renewable Energy. https://doi.org/10.1016/j.renene.2017.06.079

    Article  Google Scholar 

  • Maurya, S., & Daverey, A. (2018). Evaluation of plant-based natural coagulants for municipal wastewater treatment. 3 Biotech, 8(1), 77. https://doi.org/10.1007/s13205-018-1103-8.

  • McConnell, M. M., Truelstrup, L., Jamieson, R. C., Neudorf, K. D., Yost, C. K., & Tong, A. (2018). Removal of antibiotic resistance genes in two tertiary level municipal wastewater treatment plants. Science of the Total Environment, 643, 292–300. https://doi.org/10.1016/j.scitotenv.2018.06.212

    Article  CAS  Google Scholar 

  • Mikosz, J. (2016). Analysis of greenhouse gas emissions and the energy balance in a model municipal wastewater treatment plant. Desalination and Water Treatment, 57(59), 28551–28559. https://doi.org/10.1080/19443994.2016.1192491

    Article  CAS  Google Scholar 

  • Moravec, M., Badida, M., Mikušová, N., Sobotová, L., Švajlenka, J., & Dzuro, T. (2021). Proposed options for noise reduction from a wastewater treatment plant: Case study. Sustainability, 13(4). https://doi.org/10.3390/su13042409.

  • Morling, S., Franquiz, A., Mahlgren, J., & Westlund, A. (2014). Long term experiences of sequencing batch reactor-system and wetland treatment from a municipal wastewater treatment plant in Sweden, operated with low temperature wastewater. Water Practice and Technology, 9(2), 235–242. https://doi.org/10.2166/wpt.2014.027

    Article  Google Scholar 

  • Muazu, N. D., Alagha, O., & Anil, I. (2020). Systematic modeling of municipal wastewater activated sludge process and treatment plant capacity analysis using GPS-X. Sustainability, 12(19). https://doi.org/10.3390/su12198182.

  • Nair, A. T., & Ahammed, M. M. (2014). Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater. Environmental Science and Pollution Research International, 21(17), 10407–10418. https://doi.org/10.1007/s11356-014-2900-1

    Article  CAS  Google Scholar 

  • Neczaj, E., & Grosser, A. (2018). Circular economy in wastewater treatment plant–Challenges and barriers. Proceedings, 2(11). https://doi.org/10.3390/proceedings2110614.

  • Ng, C., Tan, B., Jiang, X. T., Gu, X., Chen, H., Schmitz, B. W., et al. (2019). Metagenomic and resistome analysis of a full-scale municipal wastewater treatment plant in Singapore containing membrane bioreactors. Frontiers in Microbiology, 10, 172. https://doi.org/10.3389/fmicb.2019.00172

    Article  Google Scholar 

  • Niu, J., Li, Y., Shang, E., Xu, Z., & Liu, J. (2016). Electrochemical oxidation of perfluorinated compounds in water. Chemosphere, 146, 526–538. https://doi.org/10.1016/j.chemosphere.2015.11.115

    Article  CAS  Google Scholar 

  • Pang, J., Yang, S., He, L., Chen, Y. P., & Ren, N. (2019). Intelligent control/operational strategies in WWTPs through an integrated Q-learning algorithm with ASM2d-guided reward. Water, 11(5). https://doi.org/10.3390/w11050927.

  • Papa, M., Foladori, P., Guglielmi, L., & Bertanza, G. (2017). How far are we from closing the loop of sewage resource recovery? A real picture of municipal wastewater treatment plants in Italy. Journal of Environmental Management, 198(Pt 1), 9–15. https://doi.org/10.1016/j.jenvman.2017.04.061

    Article  CAS  Google Scholar 

  • Patyal, V., Jaspal, D., & Khare, K. (2020). Wastewater treatment technologies: A bibliometric analysis. Science & Technology Libraries, 39(4), 383–394. https://doi.org/10.1080/0194262x.2020.1775164

    Article  Google Scholar 

  • Phanwilai, S., Kangwannarakul, N., Noophan, P., Kasahara, T., Terada, A., Munakata-Marr, J., et al. (2020). Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewater treatment plants at high COD:N ratio. Frontiers of Environmental Science & Engineering, 14(6). https://doi.org/10.1007/s11783-020-1374-2.

  • Piao, W., & Kim, Y. (2016). Evaluation of monthly environmental loads from municipal wastewater treatment plants operation using life cycle assessment. Environmental Engineering Research, 21(3), 284–290. https://doi.org/10.4491/eer.2015.124

    Article  Google Scholar 

  • Polruang, S., Sirivithayapakorn, S., Talang, P. N., & R. . (2018). A comparative life cycle assessment of municipal wastewater treatment plants in Thailand under variable power schemes and effluent management programs. Journal of Cleaner Production, 172, 635–648. https://doi.org/10.1016/j.jclepro.2017.10.183

    Article  Google Scholar 

  • Popovic, T., & Kraslawski, A. (2017). Quantitative indicators of social sustainability and determination of their interdependencies. Example analysis for a wastewater treatment plant. Period. Polytech. Chem. Eng, 62(2), 224. https://doi.org/10.3311/PPch.10526

    Article  Google Scholar 

  • Prochaska, C., & Zouboulis, A. (2020). A mini-review of urban wastewater treatment in Greece: History, development and future challenges. Sustainability, 12(15). https://doi.org/10.3390/su12156133.

  • Rashid, S. S., Liu, Y. Q., & Zhang, C. (2020). Upgrading a large and centralised municipal wastewater treatment plant with sequencing batch reactor technology for integrated nutrient removal and phosphorus recovery: Environmental and economic life cycle performance. Science of the Total Environment, 749, 141465. https://doi.org/10.1016/j.scitotenv.2020.141465

    Article  CAS  Google Scholar 

  • Robledo, V. H., Velázquez, M. A., Montañez, J. L., Pimentel, J. L., Vallejo, A. A., López, M., et al. (2017). HidroquÍmica Y Contaminantes Emergentes En Aguas Residuales Urbano Industriales De Morelia, MichoacÁn. México. Revista Internacional De Contaminación Ambiental, 33(2), 221–235. https://doi.org/10.20937/rica.2017.33.02.04

    Article  Google Scholar 

  • Rodríguez, J. P., García-Ubaque, C. A., & Penagos, J. C. (2015). Analysis of the investment costs in municipal wastewater treatment plants in Cundinamarca. Dyna, 82(192), 230–238. https://doi.org/10.15446/dyna.v82n192.44699

    Article  Google Scholar 

  • Romano, O., & Akhmouch, A. (2019). Water governance in cities: Current trends and future challenges. Water, 11(3). https://doi.org/10.3390/w11030500.

  • Romano, O., & Akhmouch, A. (2019). Water governance in cities: Current trends and future challenges. Water, 11(3). https://doi.org/10.1016/j.softx.2019.100263

  • Rozaimi, A., & M., Sakawi, Z., & Ismail, L. (2014). Perception of odour pollution impact from waste treatment plant on health, psychology and physiology of sensitive receivers. Research Journal of Applied Sciences, Engineering and Technology, 8(19), 2042–2047. https://doi.org/10.19026/rjaset.8.1196

    Article  Google Scholar 

  • Ruiz-Delgado, A., Roccamante, M. A., Malato, S., Aguera, A., & Oller, I. (2020). Olive mill wastewater reuse to enable solar photo-Fenton-like processes for the elimination of priority substances in municipal wastewater treatment plant effluents. Environmental Science and Pollution Research International, 27(30), 38148–38154. https://doi.org/10.1007/s11356-020-09721-0

    Article  CAS  Google Scholar 

  • Rukavishnikova, I., Strukova, M., Gabova, I., Strukova, L., & Karaeva, A. (2017). Introduction of iso management systems in municipal enterprises providing water supply, water preparation and wastewater treatment in the major cities of the russian federation. International Journal of Sustainable Development and Planning, 12(01), 71–78. https://doi.org/10.2495/sdp-v12-n1-71-78

    Article  Google Scholar 

  • Salazar, L., Uribe, L., Gómez, L., & Zafra, C. (2019). Análisis de la eficiencia de reactores UASB en una planta de tratamiento de aguas residuales municipales. Dyna, 86(209), 319–326. https://doi.org/10.15446/dyna.v86n209.70332

    Article  CAS  Google Scholar 

  • Salgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. Current Opinion in Environmental Science & Health, 2, 64–74. https://doi.org/10.1016/j.coesh.2018.03.005

    Article  Google Scholar 

  • Salim, H. K., Padfield, R., Hansen, S. B., Mohamad, S. E., Yuzir, A., Syayuti, K., et al. (2018). Global trends in environmental management system and ISO14001 research. Journal of Cleaner Production, 170, 645–653. https://doi.org/10.1016/j.jclepro.2017.09.017

    Article  Google Scholar 

  • Sanderson, H., Fricker, C., Brown, R. S., Majury, A., & Liss, S. N. (2016). Antibiotic resistance genes as an emerging environmental contaminant. Environmental Reviews, 24(2), 205–218. https://doi.org/10.1139/er-2015-0069

    Article  Google Scholar 

  • Santos, I. F. S., & d., Barros, R. M., & Tiago Filho, G. L. . (2016). Electricity generation from biogas of anaerobic wastewater treatment plants in Brazil: An assessment of feasibility and potential. Journal of Cleaner Production, 126, 504–514. https://doi.org/10.1016/j.jclepro.2016.03.072

    Article  CAS  Google Scholar 

  • Selvaratnam, T., Henkanatte-Gedera, S. M., Muppaneni, T., Nirmalakhandan, N., Deng, S., & Lammers, P. J. (2016). Maximizing recovery of energy and nutrients from urban wastewaters. Energy, 104, 16–23. https://doi.org/10.1016/j.energy.2016.03.102

    Article  CAS  Google Scholar 

  • Shahmahdi, N., Dehghanzadeh, R., Aslani, H., & Bakht Shokouhi, S. (2020). Performance evaluation of waste iron shavings (Fe°) for catalytic ozonation in removal of sulfamethoxazole from municipal wastewater treatment plant effluent in a batch mode pilot plant. Chemical Engineering Journal, 383. https://doi.org/10.1016/j.cej.2019.123093

  • Shao, S., Mu, H., Yang, F., Zhang, Y., & Li, J. (2016). Application of emergy analysis to the sustainability evaluation of municipal wastewater treatment plants. Sustainability, 9(1). https://doi.org/10.3390/su9010008.

  • Sivchenko, N., Kvaal, K., Ratnaweera, H., & Aziz, H. A. (2018). Floc sensor prototype tested in the municipal wastewater treatment plant. Cogent Engineering, 5(1). https://doi.org/10.1080/23311916.2018.1436929.

  • Stoeck, T., Pan, H., Dully, V., Forster, D., & Jung, T. (2018). Towards an eDNA metabarcode-based performance indicator for full-scale municipal wastewater treatment plants. Water Research, 144, 322–331. https://doi.org/10.1016/j.watres.2018.07.051

    Article  CAS  Google Scholar 

  • Sun, L., He, N., Duan, X., Yang, B., Feng, C., & Zhang, Y. (2018). The membrane fouling mechanisms of the PAC/BPAC-UF combined process used to treat the secondary effluent from municipal wastewater treatment plant. Water Science and Technology, 77(1–2), 211–219. https://doi.org/10.2166/wst.2017.518

    Article  CAS  Google Scholar 

  • Szymański, K., Morawski, A. W., & Mozia, S. (2018). Effectiveness of treatment of secondary effluent from a municipal wastewater treatment plant in a photocatalytic membrane reactor and hybrid UV/H2O2 – ultrafiltration system. Chemical Engineering and Processing - Process Intensification, 125, 318–324. https://doi.org/10.1016/j.cep.2017.11.015

    Article  CAS  Google Scholar 

  • Taheran, M., Naghdi, M., Brar, S. K., Verma, M., & Surampalli, R. Y. (2018). Emerging contaminants: Here today, there tomorrow! Environmental Nanotechnology, Monitoring & Management, 10, 122–126. https://doi.org/10.1016/j.enmm.2018.05.010

    Article  Google Scholar 

  • Tang, J., Zhang, C., Shi, X., Sun, J., & Cunningham, J. A. (2019). Municipal wastewater treatment plants coupled with electrochemical, biological and bio-electrochemical technologies: Opportunities and challenge toward energy self-sufficiency. Journal of Environmental Management, 234, 396–403. https://doi.org/10.1016/j.jenvman.2018.12.097

    Article  CAS  Google Scholar 

  • Tatar, S., Cikcikoglu Yildirim, N., Serdar, O., Yildirim, N., & Ogedey, A. (2017). The using ofGammarus pulex as a biomonitor in ecological risk assessment of secondary effluent from municipal wastewater treatment plant in Tunceli, Turkey. Human and Ecological Risk Assessment: An International Journal, 24(3), 819–829. https://doi.org/10.1080/10807039.2017.1400374

    Article  CAS  Google Scholar 

  • Tomei, M. C., Bertanza, G., Canato, M., Heimersson, S., Laera, G., & Svanström, M. (2016). Techno-economic and environmental assessment of upgrading alternatives for sludge stabilization in municipal wastewater treatment plants. Journal of Cleaner Production, 112, 3106–3115. https://doi.org/10.1016/j.jclepro.2015.10.017

    Article  CAS  Google Scholar 

  • Tovilla, E. (2020). Mind the gap: Management system standards addressing the gap for Ontario’s Municipal drinking water, wastewater and stormwater ecosystem of regulations. Sustainability, 12(17). https://doi.org/10.3390/su12177099.

  • Tran, N. H., Reinhard, M., & Gin, K. Y. (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-A review. Water Research, 133, 182–207. https://doi.org/10.1016/j.watres.2017.12.029

    Article  CAS  Google Scholar 

  • Uman, A. E., Usack, J. G., Lozano, J. L., & Angenent, L. T. (2018). Controlled experiment contradicts the apparent benefits of the Fenton reaction during anaerobic digestion at a municipal wastewater treatment plant. Water Science and Technology, 78(9), 1861–1870. https://doi.org/10.2166/wst.2018.362

    Article  CAS  Google Scholar 

  • UNE (2019). Global Environment Outlook – GEO-6: Summary for policymakers.

  • UNESCO. (2020). United Nations World Water Development Report 2020: Water and climate change. UNESCO.

    Google Scholar 

  • Vaccari, M., Foladori, P., Nembrini, S., & Vitali, F. (2018). Benchmarking of energy consumption in municipal wastewater treatment plants - A survey of over 200 plants in Italy. Water Science and Technology, 77(9–10), 2242–2252. https://doi.org/10.2166/wst.2018.035

    Article  CAS  Google Scholar 

  • Valdes, R., Aguilera, G., Tobón, E., Samaniego, M., Díaz, J., & Hernández, C. (2019). Potential uses of treated municipal wastewater in a semiarid region of Mexico. Sustainability, 11(8). https://doi.org/10.3390/su11082217.

  • Varotsos, C. A., Krapivin, V. F., Mkrtchyan, F. A., Gevorkyan, S. A., & Cui, T. (2020). A novel approach to monitoring the quality of lakes water by optical and modeling tools: Lake Sevan as a case study. Water, Air, & Soil Pollution, 231(8). https://doi.org/10.1007/s11270-020-04792-8.

  • Varotsos, C. A., Krapivin, V. F., Mkrtchyan, F. A., & Xue, Y. (2021). Optical spectral tools for diagnosing water media quality: A case study on the Angara/Yenisey river system in the Siberian region. Land, 10(4). https://doi.org/10.3390/land10040342.

  • Verstraete, W., Clauwaert, P., & Vlaeminck, S. E. (2016). Used water and nutrients: Recovery perspectives in a ‘panta rhei’ context. Bioresource Technology, 215, 199–208. https://doi.org/10.1016/j.biortech.2016.04.094

    Article  CAS  Google Scholar 

  • Wang, X., Liu, J., Ren, N. Q., & Duan, Z. (2012). Environmental profile of typical anaerobic/anoxic/oxic wastewater treatment systems meeting increasingly stringent treatment standards from a life cycle perspective. Bioresource Technology, 126, 31–40. https://doi.org/10.1016/j.biortech.2012.09.009

    Article  CAS  Google Scholar 

  • Wang, X. H., Wang, X., Huppes, G., Heijungs, R., & Ren, N. Q. (2015). Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: Case study of a cool area of China. Journal of Cleaner Production, 94, 278–283. https://doi.org/10.1016/j.jclepro.2015.02.007

    Article  Google Scholar 

  • Widiana, D. R., Wang, Y.-F., You, S.-J., Yang, H.-H., Wang, L.-C., Tsai, J.-H., et al. (2019). Air pollution profiles and health risk assessment of ambient volatile organic compounds above a municipal wastewater treatment plant. Taiwan. Aerosol and Air Quality Research, 19(2), 375–382. https://doi.org/10.4209/aaqr.2018.11.0408

    Article  CAS  Google Scholar 

  • Wlodarczyk-Makula, M. (2005). The loads of Pahs in wastewater and sewage sludge of municipal treatment plant. Polycyclic Aromatic Compounds, 25(2), 183–194. https://doi.org/10.1080/10406630590930743

    Article  CAS  Google Scholar 

  • Wu, C. Y., Bai, L., Gu, F., Wei, W., Guo, L. X., & Wen, D. M. (2018). Elimination of typical polycyclic musks in a full-scale membrane bioreactor combined with anaerobic-anoxic-oxic process in municipal wastewater treatment plant. Water Science and Technology, 78(7), 1459–1465. https://doi.org/10.2166/wst.2018.423

    Article  CAS  Google Scholar 

  • Wu, Q., & Liu, W. T. (2009). Determination of virus abundance, diversity and distribution in a municipal wastewater treatment plant. Water Research, 43(4), 1101–1109. https://doi.org/10.1016/j.watres.2008.11.039

    Article  CAS  Google Scholar 

  • WWAP. (2019). The United Nations World Water Development Report 2019: Leaving no one behind. UNESCO.

    Google Scholar 

  • Xiaoxin, Z., Jin, H., Ling, L., & Yan, L. (2018). Study on evaluation index system of operational performance of municipal wastewater treatment plants in China. IOP Conference Series: Earth and Environmental Science, 153. https://doi.org/10.1088/1755-1315/153/6/062018

  • Xu, B. F., Liang, D. H., Lv, Y., & Xu, Y. (2013). The decision-making method of model municipal wastewater treatment plant based on cost model and hierarchical structure model. Applied Mechanics and Materials, 444–445, 1732–1739. https://doi.org/10.4028/www.scientific.net/AMM

    Article  Google Scholar 

  • Xu, G., Han, Y., Li, L., & Liu, J. (2018). Characterization and source analysis of indoor/outdoor culturable airborne bacteria in a municipal wastewater treatment plant. Journal of Environmental Sciences (china), 74, 71–78. https://doi.org/10.1016/j.jes.2018.02.007

    Article  Google Scholar 

  • Yan, Q., Gao, X., Huang, L., Gan, X. M., Zhang, Y. X., Chen, Y. P., et al. (2014). Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: Mass balance analysis and consumption back-calculated model. Chemosphere, 99, 160–170. https://doi.org/10.1016/j.chemosphere.2013.10.062

    Article  CAS  Google Scholar 

  • Yang, L., Wen, Q., Chen, Z., Duan, R., & Yang, P. (2019). Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant. Frontiers of Environmental Science & Engineering, 13(3). https://doi.org/10.1007/s11783-019-1116-5.

  • Yang, X., Zhou, Z., Raju, M. N., Cai, X., & Meng, F. (2017). Selective elimination of chromophoric and fluorescent dissolved organic matter in a full-scale municipal wastewater treatment plant. Journal of Environmental Sciences, 57, 150–161. https://doi.org/10.1016/j.jes.2016.11.003

    Article  CAS  Google Scholar 

  • Zhai, W., Qin, T., Li, L., Guo, T., Yin, X., Khan, M. I., et al. (2020). Abundance and diversity of microbial arsenic biotransformation genes in the sludge of full-scale anaerobic digesters from a municipal wastewater treatment plant. Environment International, 138, 105535. https://doi.org/10.1016/j.envint.2020.105535

    Article  CAS  Google Scholar 

  • Zhang, B., Yu, Q., Yan, G., Zhu, H., Xu, X. Y., & Zhu, L. (2018). Seasonal bacterial community succession in four typical wastewater treatment plants: Correlations between core microbes and process performance. Scientific Reports, 8(1), 4566. https://doi.org/10.1038/s41598-018-22683-1

    Article  CAS  Google Scholar 

  • Zhi, S., Banting, G., Li, Q., Edge, T. A., Topp, E., Sokurenko, M., et al. (2016). Evidence of naturalized stress-tolerant strains of Escherichia coli in municipal wastewater treatment plants. Applied and Environment Microbiology, 82(18), 5505–5518. https://doi.org/10.1128/AEM.00143-16

    Article  CAS  Google Scholar 

  • Zhi, S., Banting, G., Stothard, P., Ashbolt, N. J., Checkley, S., Meyer, K., et al. (2019). Evidence for the evolution, clonal expansion and global dissemination of water treatment-resistant naturalized strains of Escherichia coli in wastewater. Water Research, 156, 208–222. https://doi.org/10.1016/j.watres.2019.03.024

    Article  CAS  Google Scholar 

  • Ziajahromi, S., Neale, P. A., Telles, I., Chua, A., & Leusch, F. D. L. (2020). An audit of microplastic abundance throughout three Australian wastewater treatment plants. Chemosphere, 263, 128294. https://doi.org/10.1016/j.chemosphere.2020.128294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilda Janet Arellano-Wences.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Navarrete, R., Arellano-Wences, H.J., Colín-Cruz, A. et al. Thematic and Geographical Trend in Scientific Research Applied in Municipal Wastewater Treatment Plants: an Overview. Water Air Soil Pollut 232, 318 (2021). https://doi.org/10.1007/s11270-021-05269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05269-y

Keywords

Navigation