Skip to main content
Log in

Earthquake Prediction: Old Expectations and New Results

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

A significant number of modern earthquake prediction algorithms are based on general signs of loss of stability by the system, without reference to the physical mechanism behind the development of seismic instability. Considerations have been repeatedly expressed that such an approach is unlikely to lead to a completely satisfactory forecast. New geophysical evidence in favor of a fluid metamorphogenic model of the earthquake mechanism and data on the typical nature of the precursor seismic process are presented. The use of these new data for earthquake prediction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Andreeva, M.Yu. and Rodkin, M.V., On the seismotectonic setting in the ocean side of deep trenches, Russ. J. Pac. Geol., 2017, vol. 11, pp. 11–18.

    Article  Google Scholar 

  2. Bak, P., How Nature Works, New York: Springer-Verlag, 1996.

    Book  Google Scholar 

  3. Drumya, A.V. and Shebalin, N.V., Zemletryasenie: Gde, kogda, pochemu? (Earthquake: Where, When, Why?), Kishinov: Shtiintsa, 1985.

  4. Geller, R.J., Jakson, D.D., Kagan, Y.Y., and Mulargia, F., Earthquakes cannot be predicted, Science, 1997, vol. 275, pp. 1616–1617.

    Article  Google Scholar 

  5. Kalinin, V.A., Rodkin, M.V., and Tomashevskaya, I.S., Geodinamicheskie effekty fiziko-khimicheskikh prevrashchenii v tverdoy srede (Geodynamic Effects of Physical and Chemical Transformations in Solid Medium), Moscow: Nauka, 1989.

  6. Kasahara, K., Earthquake Mechanics, Cambridge Univ. Press, 1981.

    Google Scholar 

  7. Kasahara, J., Toriumi, M., and Kawamura, K., Role of water in earthquake generation, Bull. Earthquake Res. Inst., 2001, vol. 76, nos. 3–4.

  8. Kosobokov, V.G., Theoretical framework and algorithms for forecasting earthquakes based on the precursor activation of seismicity, Doctoral (Phys.-Math.) Dissertation, Moscow, 2004.

  9. Marone, C. and Liu, M., Transformation shear instability and the seismogenic zone for deep earthquakes, Geophys. Res. Lett., 1997, vol. 24, pp. 1887–1890.

    Article  Google Scholar 

  10. Nanjo, K.Z., Earthquake forecasts for the CSEP Japan experiment based on the RI algorithm, Earth Planets Space, 2011, vol. 63, pp. 261–274.

    Article  Google Scholar 

  11. Nanjo, K.Z., Tsuruoka, H., Yokoi, S., Ogata, Y., Falcone, G., Hirata, N., Ishigaki, Y., Jordan, T.H., Kasahara, K., Obara, K., Schorlemmer, D., Shiomi, K., and Zhuang, J., Predictability study on the aftershock sequence following the 2011 Tohoku-Oki, Japan, earthquake: First results, Geophys. J. Int., 2012, vol. 191, no. 2, pp. 653–658. https://doi.org/10.1111/j.1365-246X.2012.05626.x

    Article  Google Scholar 

  12. Nikitina, M.A., Rodkin, M.V., and Shmakov, I.G., Relationships of the seismicity at the Alaska Subduction Zone to metamorphism and the deep fluid regime, Izv., Phys. Solid Earth, 2020, vol. 56, no. 6, pp. 892–899. https://doi.org/10.1134/S1069351320060063

    Article  Google Scholar 

  13. Pruessner, G., Self-Organised Criticality: Theory, Models and Characterisation, Cambridge: Univ. Press, 2012. https://doi.org/10.1017/CBO9780511977671.

  14. Rebetskii, Yu.L., Tektonicheskie napryazheniya i prochnost’ prirodnykh gornykh massivov (Tectonic Stresses and Strength of Natural Mountain Ranges), Moscow: IKTS Akademkniga, 2007.

  15. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., et al., GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res., 2006, vol. 111, no. B5. https://doi.org/10.1029/2005JB004051

  16. Rodkin, M.V., Rol’ glubinnogo flyuidnogo rezhima v geodinamike i seismotektonike (The Role of Deep Fluid Regime in Geodynamics and Seismotectonics), Moscow: Nats. Geofiz. Komitet, 1993.

  17. Rodkin, M.V., Crustal earthquakes induced by solid-state transformations, J. Earthquake Predict. Res., 1995, vol. 4, pp. 215–223.

    Google Scholar 

  18. Rodkin, M.V., Contradictions in the recent seismogenetical notions, Phys. Chem. Earth, 1996, vol. 21, no. 4, pp. 257–260.

    Article  Google Scholar 

  19. Rodkin, M.V., Statistics of apparent stresses and the problem of the nature of the earthquake source, Izv. Ross. Akad. Nauk, Fiz. Zemli, 2001, no. 8, pp. 53–63.

  20. Rodkin, M.V., Seismicity in the generalized vicinity of large earthquakes, J. Volcanol. Seismol., 2008, vol. 2, pp. 435–445.

    Article  Google Scholar 

  21. Rodkin, M.V., Forecast of earthquakes, in Sb. nauchno-populyarnykh statei – pobeditelei konkursa RFFI 2009 g. (Collection of Popular Science Articles–Winners of the Russian Foundation for Basic Research Competition in 2009), Konov, V.I., Ed., Moscow: GEOS-Priroda, 2010, pp. 330–338.

  22. Rodkin, M.V., Alternative to SOC concept-model of seismic regime as a set of episodes of random avalanche-like releases occurring on a set of metastable subsystems, Izv., Phys. Solid Earth, 2011, vol. 47, artic. no. 966.

  23. Rodkin, M.V., Patterns of seismicity found in the generalized vicinity of a strong earthquake: Agreement with common scenarios of instability development, in Extreme Events and Natural Hazards: The Complexity Perspective, Sharma, A.S., et al., Washington: AGU, 2012, pp. 27–39. https://doi.org/10.1029/2011GM001060.

  24. Rodkin, M.B., A typical foreshock and aftershock anomaly: Observations, interpretation, and applications, J. Volcanol. Seismol., 2020, vol. 14, pp. 58–69.

    Article  Google Scholar 

  25. Rodkin, M.V. and Tikhonov, I.N., The typical seismic behavior in the vicinity of a large earthquake, Phys. Chem. Earth, 2016, vol. 95, pp. 73–84.

    Article  Google Scholar 

  26. Rodkin, M.V. and Rundkvist, D.V., Geoflyuidodinamika. Prilozhenie k seismologii, tektonike, protsessam rudo- i neftegeneza (Geofluidodynamics. Application to Seismology, Tectonics, Ore, and Oil Genesis Processes), Dolgoprudny: Intellekt, 2017.

  27. Romashkova, L.L. and Kosobokov, V.G., Dynamics of seismic activity before and after the strongest earthquakes in the world, 1985–2000, Vychisl. Seismol., 2001, no. 32, pp. 162–189.

  28. Shebalin, P.N., Increase in the correlation radius of seismicity as a precursor to strong earthquakes: Forecast methodology with a waiting period of less than a year, Doctoral (Phys.-Math.) Dissertation, Moscow, 2004.

  29. Smirnov, V.B. and Ponomarev, A.V., Regularities of relaxation of the seismic regime according to field and laboratory data, Izv. Ross. Akad. Nauk, Fiz. Zemli, 2004, no. 10, pp. 26–36.

  30. Sobolev, G.A., Osnovy prognoza zemletryasenii (Basics of Earthquake Prediction), Moscow: Nauka, 1993.

  31. Sornette, D., Mechanochemistry: An hypothesis for shallow earthquakes, in Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, Teisseyre, R. and Majewski, E., Eds., Academic Press, 2001, pp. 329–366.

    Google Scholar 

  32. Wells, D.L. and Coppersmith, K.J., New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 1994, vol. 84, pp. 974–1002.

    Google Scholar 

  33. Zav’yalov, A.D., Srednesrochnyy prognoz zemletryasenii. Osnovy, metodika, realizatsiya (Medium-Term Earthquake Forecast. Basics, Methodology, and Implementation), Moscow: Nauka, 2006.

Download references

Funding

The study work was carried out under the state task of the Institute of Earthquake Prediction Theory and Mathematical Geophysics, the Russian Academy of Sciences (project AAAA-A19-119011490129-0), and the Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of Sciences (project AAAA-A18-118012290125-2.2), with partial support by the Russian Foundation for Basic Research (project no. 19-05-00466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Rodkin.

Ethics declarations

The author declares that there is no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodkin, M.V. Earthquake Prediction: Old Expectations and New Results. Seism. Instr. 57, 438–445 (2021). https://doi.org/10.3103/S0747923921040095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923921040095

Keywords:

Navigation