Skip to main content
Log in

Methods and Means of Synchronizing Seismic Stations Operating under Conditions of Inaccessibility of GPS Satellite Signals

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

Positioning and synchronization of seismic stations using GPS receivers is convenient and has sufficiently high accuracy for subsequent processing and adequate interpretation of the obtained seismic data. However, it is impossible to synchronize a seismic station at the time of data acquisition if it is outside the access area of GPS satellites, e.g., in a deep mine, such that the receiver itself cannot be extracted from the mine and remains connected to the seismic station. This situation is relevant, e.g., for seismological studies conducted by the IGD RAS in Gubkin. This study is aimed at solving the problem of positioning and synchronizzing seismic stations directly inaccessible to the signals of satellites of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Bashilov, I.P., Volosov, S.G., and Korolyov, S.A., Means of synchronization of independent seismic stations in seismic arrays, Seism. Instrum., 2013, vol. 49, pp. 244–253.

    Article  Google Scholar 

  2. Bashilov, I.P., Volosov, S.G., Korolyov, S.A., Kosarev, G.L., Riznichenko, O.Yu., and Sanina, I.A., The ADSS-3 broadband stand-alone digital seismic station, Seism. Instrum., 2014, vol. 50, pp. 177–191.

    Article  Google Scholar 

  3. Droznin, D., Shapiro, N., Droznina, S., Senyukov, S., Chebrov, V., and Gordeev, E., Detecting and locating volcanic tremors on the Klyuchevskoy group of volcanoes (Kamchatka) based on correlations of continuous seismic records, Geophys. J. Int., 2015, vol. 203, pp. 1001–1010. https://doi.org/10.1093/gji/ggv342

    Article  Google Scholar 

  4. Followill, F. and Harris, D.B., Comments on Small Aperture Array Designs. Informal Report, Livermore, CA: Lawrence Livermore Natl. Lab., 1983.

    Google Scholar 

  5. Harjes, H.P., Design and siting of new regional array in Central Europe, Bull. Seismol. Soc. Am., 1990, vol. 80, pp. 1801–1817.

    Google Scholar 

  6. Kitov, I.O., Sanina, I.A., Sergeev, S.S., Nesterkina, M.A., and Konstantinovskaya, N.L., Detection, estimation of magnitude, and relative location of weak aftershocks using waveform cross-correlation: The earthquake of August 7, 2016, in the town of Mariupol, Seism. Instrum., 2018, vol. 54, pp. 158–174. https://doi.org/10.3103/S074792391802007X

    Article  Google Scholar 

  7. Kitov, I.O., Turuntaev, S.B., Konovalov, A.V., Stepnov, A.A., and Pupatenko, V.V., Use of waveform cross correlation to reconstruct the aftershock sequence of the August 14, 2016, Sakhalin earthquake, Seism. Instrum., 2019, vol. 55, pp. 544–558. https://doi.org/10.3103/S0747923919050074

    Article  Google Scholar 

  8. Koch, K. and Stammler, K., Detection and elimination of time synchronization problems for the GERESS array by correlating microseismic noise, Seismol. Res. Lett., 2003, vol. 74, no. 6, pp. 803–816.

    Article  Google Scholar 

  9. Korhonen, H., Pirhonen, S., Ringdal, F., Mykkeltveit, S., Kvaerna, T., Larsen, P.W., and Paulsen, R., The FINESA Array and Preliminary Results of Data Analysis. Report S-16, Institute of Seismology, Univ. of Helsinki, 1987.

  10. Kushnir, A.F. and Varypaev, A.V., Robustness of statistical algorithms for location of microseismic sources based on surface array data, Comp. Geosci., 2017, vol. 21, no. 3, pp. 459–477. https://doi.org/10.1007/s10596-017-9623-6

    Article  Google Scholar 

  11. Mykkeltveit, S. and Bungum, H., Processing of regional events using data from small-aperture arrays, Bull. Seismol. Soc. Am., 1984, vol. 74, pp. 2313–2333.

    Google Scholar 

  12. Mykkeltveit, S., Astebol, K., Doornbos, D., and Husebye, E., Seismic array configuration optimization, Bull. Seismol. Soc. Am., 1983, vol. 73, pp. 173–186.

    Google Scholar 

  13. Mykkeltveit, S., Ringdal, F., Kvaerna, T., and Alewine, R., Application of regional arrays in seismic verification research, Bull. Seismol. Soc. Am., 1990, vol. 80, pp. 1777–1800.

    Google Scholar 

  14. Nesterkina, M.A., Sergeev, S.I., Sanina, I.A., Konstantinovskaya, N.L., Danilova, T.V., and Sergeev, K.S., Identification of local seismic events using the Mikhnevo seismic array, Seism. Instrum., 2018, vol. 54, pp. 408–416. https://doi.org/10.3103/S0747923918040059

    Article  Google Scholar 

  15. Nesterkina, M.A., Kulikov, V.I., Konstantinovskaya, N.L., Sanina, I.A., and Riznichenko, O.Yu., Assessment of the seismic impact of industrial explosions in the central part of the East European Platform, Seism. Instrum., 2019, vol. 55, pp. 148–159. https://doi.org/10.3103/S0747923919020105

    Article  Google Scholar 

  16. Ringdal, F. and Husebye, E.S., Application of arrays in the detection, location and identification of seismic events, Bull. Seismol. Soc. Am., 1982, vol. 72, no. 6. pp. S201–S224.

    Google Scholar 

  17. Rost, S. and Garnero, E.J., Array seismology advances Earth interior research, Eos, 2004, vol. 85, no. 32, pp. 301–306.

    Article  Google Scholar 

  18. Sanina, I.A., Volosov, S.G., Chernykh, O.A., Asming, V.E., Soldatenkov, A.M., and Riznichenko, O.Yu., The design and experimental use of the Mikhnevo 2D small aperture seismic array, Seism. Instrum., 2008, vol. 44, pp. 1–11.

    Article  Google Scholar 

  19. Sanina, I.A., Korolev, S.A., Kosarev, G.L., and Riznichenko, O.Yu., Lithospheric structure in the junction zone between megablocks of the East European Craton based on the receiver function data, Dokl. Earth Sci., 2014, vol. 456, pp. 618–621.

    Article  Google Scholar 

  20. Sanina, I.A., Volosov, S.G., Goyev, A.G., Konstantinovskaya, N.L., Nesterkina, M.A., and Tarasov, S.A., The accuracy of the location of the epicenters of seismic events according to the data of the small-aperture seismic group Mikhnevo: Are additional seismic stations needed?, Geofiz. Issled., 2020, vol. 21, no. 2, pp. 48–60. https://doi.org/10.21455/gr2020.2-4

    Article  Google Scholar 

  21. Sanina, I.A., Nesterkina, M.A., Konstantinovskaya, N.L., and Gabsatarova, I.P., Identification of the nature of seismic events that occurred in the East European platform as recorded by the Mikhnevo small-aperture seismic array at regional distances, Seism. Instrum., 2021, vol. 57, pp. 38–54. https://doi.org/10.21455/si2020.2-5

    Article  Google Scholar 

  22. Savit, C.H., US Patent 4589100, 1986.

  23. Sergeev, S.I., Korolov, S.A., Volosov, S.G., and Kuznetsov, O.P., Development of a small-aperture seismic antenna “Mikhnevo” for solving new seismological problems, Nauchn. Priborostr., 2017, vol. 2, no. 1, pp. 35–39.

    Article  Google Scholar 

  24. Varypaev, A.V., Sanina, I.A., Chulkov, A.B., and Kushnir, A.F., Application of robust phase algorithms for seismic emission detection in the area of blasting operations in mines, Seism. Instrum., 2019, vol. 55, pp. 136–147. https://doi.org/10.3103/S0747923919020129

    Article  Google Scholar 

  25. Volosov, S.G., Korolyov, S.A., and Soldatenkov, A.M., Synchronization system of stations records for Mikhnevo small aperture array, Seism. Instrum., 2013, vol. 49, pp. 16–21.

    Article  Google Scholar 

Download references

Funding

The study was performed within the framework of research project AAAA-A19-119022090015-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Tarasov.

Ethics declarations

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volosov, S.G., Korolyov, S.A., Nestyorkin, V.N. et al. Methods and Means of Synchronizing Seismic Stations Operating under Conditions of Inaccessibility of GPS Satellite Signals. Seism. Instr. 57, 397–408 (2021). https://doi.org/10.3103/S0747923921040113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923921040113

Keywords:

Navigation