Skip to main content
Log in

Foliar applications of thidiazuron and putrescine increase leaf iron and chlorophyll concentrations in iron-deficient pot marigold (Calendula officinalis L.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The study was aimed to determine the effects of foliar applications of thidiazuron and putrescine, two compounds that may cause iron (Fe) remobilization, in pot marigold (Calendula officinalis L.) grown in controlled conditions under a limited Fe supply. In a first experiment, plants were grown in a greenhouse in a mixture of sand and perlite with pre-growth/growth Fe concentrations ranging from 0 to 20 µM, and treated three consecutive times with foliar sprays of 0 or 45.4 µM thidiazuron. In a second experiment, plants were grown in a greenhouse in hydroponics with pre-growth/growth Fe concentrations in the nutrient solution ranging from 0 to 20 µM, and treated three consecutive times with foliar sprays of 0, 2.27, or 5.67 mM putrescine. Parameters measured included leaf photosynthetic pigments and Fe concentrations, root ferric chelate reductase activities, photosynthesis rates and peroxidase in leaf extracts in the first experiment, and leaf photosynthetic pigments, leaf and root micronutrient concentrations, root ferric chelate reductase activities, and superoxide dismutase and peroxidase activities in leaf extracts in the second experiment. Results indicate that foliar thidiazuron and putrescine treatments in the µM and mM ranges, respectively, improve Fe transport to the leaf under zero or low supply of Fe. This indicates that foliar treatments with thidiazuron and putrescine increase remobilization of pre-existing plant Fe pools. This could be an additional tool for the optimization of Fe nutrition in ornamental plants such as C. officinalis when grown in controlled conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, Álvarez-Fernández A, López-Millán AF (2011) Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem 49:471–482

    Article  PubMed  CAS  Google Scholar 

  • AOAC (2000) Official methods of analysis, association of analytical chemists. AOAC International, Washington D.C., USA, p 334

    Google Scholar 

  • Asthir B, Koundal A, Bains N (2012) Putrescine modulates antioxidant defense response in wheat under high temperature stress. Biol Plant 56:757–761

    Article  CAS  Google Scholar 

  • Balibrea Lara ME, Gonzalez Garcia MC, Fatima T, Ehneß R, Lee TK, Proels R, Tanner W, Roitsch T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16(5):1276–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bienfait HF, Bino RJ, van der Bliek AM, Duivenvoorden JF, Fontaine JM (1983) Characterization of ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris. Physiol Plant 59:196–202

    Article  CAS  Google Scholar 

  • Briat JF, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20:33–40

    Article  CAS  PubMed  Google Scholar 

  • Bürstenbinder K, Waduwara I, Schoor S, Moffatt BA, Wirtz M, Minocha SC, Oppermann Y, Bouchereau A, Hell R, Sauter M (2010) Inhibition of 5’-methylthioadenosine metabolism in the Yang cycle alters polyamine levels, and impairs seedling growth and reproduction in Arabidopsis. Plant J 62:977–988

    PubMed  Google Scholar 

  • Černý M, Dyčka F, Bobál’ová J, Brzobohatý B (2010) Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling. J Exp Bot 62:921–937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Wei X (2018) Thidiazuron in micropropagation of aroid plants. In: Ahmad N, Faisal M (eds) Thidiazuron: from urea derivative to plant growth regulator. Springer, Singapore

    Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis thaliana. Plant Physiol 154:810–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67:463–476

    Article  CAS  PubMed  Google Scholar 

  • Dandan Ch, Qingsong S, Lianghong Y, Adnan Y, Bingsong Z (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945

    Article  Google Scholar 

  • Dewi K, Darussalam, (2018) Effect of paclobutrazol and cytokinin on growth and source-sink relationship during grain filling of black rice (Oryza sativa L. ‘Cempo Ireng”). Ind J Plant Physiol 23:507–515

    Article  CAS  Google Scholar 

  • Dewir YH, Nurmansyah NY, Siva JATD (2018) Tidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep 37:1451–1470

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Benito P, Banakar R, Rodríguez-Menéndez S, Capell T, Pereiro R, Christou P, Abadía J, Fernández B, Álvarez-Fernández A (2018) Iron and zinc in the embryo and endosperm of rice (Oryza sativa L.) seeds in contrasting 2′-deoxymugineic acid/nicotianamine scenarios. Front Plant Sci 9:1190

    Article  PubMed  PubMed Central  Google Scholar 

  • Du X, Wang H, He J, Zhu B, Guo J, Hou W, Weng Q, Zhang X (2018) Identification of nicotianamine synthase genes in Triticum monococcum and their expression under different Fe and Zn concentrations. Gene 672:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ehneß R, Roitsch T (1997) Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. Plant J 11:539–548

    Article  PubMed  Google Scholar 

  • Gheshlaghi Z, Khorassani R, Abadía J, Kafi M, Fotovat A (2019) Glutathione foliar fertilisation prevents lime-induced iron chlorosis in soil grown Medicago scutellata. J Plant Nutr Soil Sci 182:607–624

    Article  CAS  Google Scholar 

  • Graziano M, Lamattina L (2007) Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J 52:949–960

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Li Z, Mao Y, Struik PC, Zhang H, Liu L, Wang Z, Yang J (2018) Role of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic application. Plant Sci 274:320–331

    Article  CAS  PubMed  Google Scholar 

  • Guivarc’h A, Rembur J, Goetz M, Roitsch T, Noin M, Schmülling T, Chriqui D (2002) Local expression of the ipt gene in transgenic tobacco (Nicotiana tabacum L. cv. SR1) axillary buds establishes a role for cytokinins in tuberization and sink formation. J Exp Bot 53:621–629

    Article  CAS  PubMed  Google Scholar 

  • Gujjar RS, Banyen P, Chuekong W, Worakan P, Roytrakul S, Supaibulwatana K (2020) A synthetic cytokinin improves photosynthesis in rice under drought stress by modulating the abundance of proteins related to stomatal conductance, chlorophyll contents, and rubisco activity. Plants 9:1106

    Article  CAS  PubMed Central  Google Scholar 

  • Hai NN, Chuong NN, Tu NHC, Kisiala A, Hoang XLT, Thao NP (2020) Role and regulation of cytokinins in plant response to drought stress. Plants 9:422

    Article  CAS  PubMed Central  Google Scholar 

  • Hatami M, Hatamzadeh A, Ghasemnezhad M, Sajedi RH (2013) Antioxidant enzymatic protection during pelargonium plant leaf senescence is mediated by thidiazuron. Trakia J Sci 11:152–157

    Google Scholar 

  • Hindt MN, Guerinot ML (2012) Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta-Mol Cell Res 1823:1521–1530

    Article  CAS  Google Scholar 

  • Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K (2018) Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int J Mol Sci 19:4045

    Article  PubMed Central  Google Scholar 

  • Ipek M, Aras S, Arikan S, Estiken A, Pirlak L, Donmez MF, Turan M (2017) Root plant growth promoting rhizobacteria inoculations increase ferric chelate reductase (FC-R) activity and Fe nutrition in pear under calcareous soil condition. Sci Hortic 219:144–151

    Article  CAS  Google Scholar 

  • Izadi Z, Rezaei Nejad A, Abadia J (2020) Physio-morphological and biochemical responses of pot marigold (Calendula officinalis L.) to split iron nutrition. Acta Physiol Plant 42:1–14

    Article  CAS  Google Scholar 

  • Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ (2007) Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol 144:278–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakkar R, Nagar P, Ahuja P, Rai V (2000) Polyamines and Plant Morphogenesis. Biol Plant 43:1–11

    Article  CAS  Google Scholar 

  • Kaur P, Singh K (2015) Influence of growth regulators on physiology and senescene of cut stems of chrysanthemum (Chrysanthemum morifolium Ramat) var. thai ching queen. Int J Allied Practice Res Review 2:31–41

    Google Scholar 

  • Kuiper D (1993) Sink strength: established and regulated by plant growth regulators. Plant Cell Environ 16:1025–1026

    Article  CAS  Google Scholar 

  • Lei GJ, Zhu XF, Wang ZW, Dong F, Dong NY, Zheng SJ (2014) Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant Cell Environ 37:852–863

    Article  CAS  PubMed  Google Scholar 

  • Lerbs S, Lerbs W, Klyachko N, Romanko E, Kulaeva O, Wollgiehn R, Parthier B (1984) Gene expression in cytokinin-and light-mediated plastogenesis of Cucurbita cotyledons: ribulose-1, 5-bisphosphate carboxylase/oxygenase. Planta 162:289–298

    Article  CAS  PubMed  Google Scholar 

  • Li W, Lan P (2017) The understanding of the plant iron deficiency responses in strategy I plants and the role of ethylene in this process by omic approaches. Front Plant Sci 8:1–15

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu Y, Zhang M, Meng Z, Wang B, Chen M (2020) Research progress on the roles of cytokinin in plant response to stress. Int J Mol Sci 21:6574

    Article  CAS  PubMed Central  Google Scholar 

  • Lucena C, Porras RA, Garcia ME, Alcántara EM, Pérez-Vicente R, Zamarreño AM, Bacaicoa E, García-Mina JM, Smith AP, Romera FJ (2019) Ethylene and phloem signals are involved in the regulation of responses to Fe and P deficiencies in roots of Strategy I plants. Front Plant Sci 10:1237

    Article  PubMed  PubMed Central  Google Scholar 

  • MacAdam JW, Nelson CJ, Sharp RE (1992) Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiol 99:872–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen JM, Brandt K, Hansen J (1993) Long-term effects of thidiazuron are intermediate between benzyladenine, kinetin or isopentenyladenine in Miscanthus sinensis. Plant Cell Tiss Org 35:173–179

    Article  CAS  Google Scholar 

  • Rezaei Nejad A, Izadi Z, Sepahvand K, Momivand H, Mousavifard S (2020) Changes in total phenol and some enzymatic and non-enzymatic antioxidant activities of rose-scented geranium (Pelargonium graveolens) in response to exogenous ascorbic acid and iron nutrition. J Ornam Plants 10:27–36

    Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448

    Article  CAS  PubMed  Google Scholar 

  • Santi S, Cesco S, Varanini Z, Pinton R (2005) Two plasma membrane H+-ATPase genes are differentially expressed in iron-deficient cucumber plants. Plant Physiol Biochem 43:287–292

    Article  CAS  PubMed  Google Scholar 

  • Schmidt W, Tittel J, Schikora A (2000) Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol 122:1109–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheokand S, Kumari A, Sawhney V (2008) Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiol Mol Biol Plants 14:355–362

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 56:114–121

    Article  CAS  PubMed  Google Scholar 

  • Sugiharto B, Burnell JN, Sugiyama T (1992) Cytokinin is required to induce the nitrogen-dependent accumulation of mRNAs for phosphoenolpyruvate carboxylase and carbonic anhydrase in detached maize leaves. Plant Physiol 100:153–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tun NN, Holk A, Scherer GF (2001) Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Lett 509:174–176

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner T, Holst Kerstin Pors Y, Guivarch A, Mustroph A, Chriqui D, Grimm B, Schmulling T (2008) Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J Exp Bot 59:2659–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wybouw B, De Rybel B (2019) Cytokinin—a developing story. Trends Plant Sci 24:177–185

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Tang H, Nie Y, Zhang X (2011) Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur J Agron 35:164–170

    Article  CAS  Google Scholar 

  • Ye YQ, Jin CW, Fan SK, Mao QQ, Sun CL, Yan Y, Lin XY (2015) Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall. Sci Rep 5:10746

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu S-M, Lo S-F, Ho T-HD (2015) Source–sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci 20:844–857

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zheng GH, Liu P, Song JM, Di Xu G, Cai MZ (2011) Morphological and physiological responses of root tip cells to Fe2+ toxicity in rice. Acta Physiol Plant 33:683–689

    Article  CAS  Google Scholar 

  • Zhang X, Zhang D, Sun W, Wang T (2019) The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. Int J Mol Sci 20:2424

    Article  PubMed Central  CAS  Google Scholar 

  • Zhu XF, Wang B, Song WF, Zheng SJ, Shen RF (2016) Putrescine alleviates iron deficiency via NO-dependent reutilization of root cell-wall Fe in Arabidopsis. Plant Physiol 170:558–567

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financed by Lorestan University, Iran. Partial support for JA was by the Spanish State Research Agency (AEI) co-financed with the European Regional Development Fund (FEDER) (projects AGL2016-75226-R and PID2020-115856RB-I00; AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdolhossein Rezaei Nejad or Javier Abadía.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Additional information

Communicated by S. Esposito.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 711 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, Z., Rezaei Nejad, A. & Abadía, J. Foliar applications of thidiazuron and putrescine increase leaf iron and chlorophyll concentrations in iron-deficient pot marigold (Calendula officinalis L.). Acta Physiol Plant 43, 122 (2021). https://doi.org/10.1007/s11738-021-03295-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03295-1

Keywords

Navigation