Skip to main content
Log in

Bis(2-pyridyl)ditellane as a Precursor for [HgTe]-Based Clusters and Zwitterionic Compounds

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Metal chalcogenide cluster compounds are interesting substances by virtue of their intrinsic electronic and optical properties and their potential usage as single-source precursors for semiconductor materials. Herein, the synthesis and structural characterization of six new [HgTe]-based cluster compounds derived from bis(2-pyridyl)ditellane (oPy2Te2), and different mercury salts are described: four neutral clusters of the composition [Hg4(PPh3)2(μ-oPyTe)6Cl2] (1), [Hg4(PPh3)2(μ-oPyTe)6Br2] (2), [Hg4(PPh3)2(μ-oPyTe)6I2]⋅DMF (3) and ([Hg8(μ-oPyTe)12SCl2]⋅5.25DMF (4), and the two zwitterionic clusters [Hg8(μ-HoPyTe)0.93(μ-oPyTe)11.07SBr2.93])⋅7.62DMF (5) and [Hg8(μ-HoPyTe)0.83(μ-oPyTe)11.17SI2.83])⋅7.25DMF (6) (oPy = 2-pyridyl). The compounds were studied by single-crystal X-ray diffraction, FT-IR spectroscopy, and confocal Raman microspectroscopy. Furthermore, the optical energy gaps of the compounds were estimated by solid-state UV–Vis diffuse reflectance spectroscopy. The compounds with the smaller core structure (13) presented the larger Eg values, confirming small-particle optical properties’ strong dependence on the core structure’s size and composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

A crystallographic data table, ellipsoid representations, and spectroscopic data are available free of charge as electronic supplementary information. CCDC 2027894-2027899 contain the supplementary crystallographic data for the compounds 16 respectively. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+ 44) 1223–336–033; or e-mail: deposit@ccdc.cam.ac.uk.

References

  1. M. R. Friedfeld, J. L. Stein, and B. M. Cossairt (2017). Inorg. Chem. 56, 8689.

    Article  CAS  PubMed  Google Scholar 

  2. S. L. Cumberland, K. M. Hanif, A. Javier, G. A. Khitrov, G. F. Strouse, S. M. Woessner, and C. S. Yun (2002). Chem. Mater. 14, 1576.

    Article  CAS  Google Scholar 

  3. J. G. Brennan, T. Siegrist, P. J. Carroll, S. M. Stuczynski, P. Reynders, L. E. Brus, and M. L. Steigerwald (1990). Chem. Mater. 24, 403.

    Article  Google Scholar 

  4. M. L. Steigerwald and C. R. Sprinkle (1987). J. Am. Chem. Soc. 109, 7200.

    Article  CAS  Google Scholar 

  5. J. F. Corrigan, O. Fuhr, and D. Fenske (2009). Adv. Mater. 21, 1867.

    Article  CAS  Google Scholar 

  6. V. N. Soloviev, A. Eichhöfer, D. Fenske, and U. Banin (2000). J. Am. Chem. Soc. 122, 2673.

    Article  CAS  Google Scholar 

  7. S. Kudera, M. Zanella, C. Giannini, A. Rizzo, Y. Li, G. Gigli, R. Cingolani, G. Ciccarella, W. Spahl, W. J. Parak, and L. Manna (2007). Adv. Mater. 19, 548.

    Article  CAS  Google Scholar 

  8. Q. Wang, J. Li, Y. Bai, J. Lian, H. Huang, Z. Li, Z. Lei, and W. Shangguan (2014). Green Chem. 16, 2728.

    Article  CAS  Google Scholar 

  9. I. Vamvasakis, I. T. Papadas, T. Tzanoudakis, C. Drivas, S. A. Choulis, S. Kennou, and G. S. Armatas (2018). ACS Catal. 8, 8726.

    Article  CAS  Google Scholar 

  10. A. Eichhöfer and P. Deglmann (2004). Eur. J. Inorg. Chem. 2004, 349.

    Article  Google Scholar 

  11. P. A. W. Dean, V. Manivannan, and J. J. Vittal (1989). Inorg. Chem. 28, 2360.

    Article  CAS  Google Scholar 

  12. A. K. Singh, B. L. Khandelwal, and V. Srivastava (1990). Phosphorus Sulfur Silicon Relat. Elem. 48, 169.

    Article  CAS  Google Scholar 

  13. P. A. W. Dean and V. Manivannan (1990). Can. J. Chem. 68, 214.

    Article  CAS  Google Scholar 

  14. P. A. W. Dean, V. Manivannan, and J. J. Vittal (1990). Inorg. Chem. 29, 2997.

    Article  CAS  Google Scholar 

  15. M. Bochmann and K. J. Webb (1991). J. Chem. Soc. Dalton Trans. 9, 2325.

    Article  Google Scholar 

  16. M. Bochmann and K. J. Webb (1997). Inorg. Synth. 31, 24.

    CAS  Google Scholar 

  17. E. S. Lang, R. A. Zan, C. C. Gatto, R. A. Burrow, and E. M. Vázquez-López (2002). Eur. J. Inorg. Chem. 2002, 331.

    Article  Google Scholar 

  18. E. S. Lang, G. M. de Oliveira, B. Tirloni, and M. A. Villetti (2008). J. Clust. Sci. 19, 459.

    Article  CAS  Google Scholar 

  19. B. Tirloni, D. F. Back, R. A. Burrow, G. M. de Oliveira, M. A. Villetti, and E. S. Lang (2010). J. Braz. Chem. Soc. 21, 1230.

    Article  CAS  Google Scholar 

  20. E. S. Lang, G. M. de Oliveira, D. F. Back, and P. Reckziegel (2013). Polyhedron 50, 467.

    Article  Google Scholar 

  21. M. I. P. R. Modesto, S. Finoto, G. A. Casagrande, C. Raminelli, E. S. Lang, D. F. Back, S. L. Oliveira, and M. A. U. Martines (2012). Inorg. Chim. Acta 392, 103.

    Article  CAS  Google Scholar 

  22. D. F. Back, G. M. de Oliveira, R. A. Burrow, E. E. Castellano, U. Abram, and E. S. Lang (2007). Inorg. Chem. 46, 2356.

    Article  CAS  PubMed  Google Scholar 

  23. B. Tirloni, E. S. Lang, G. M. de Oliveira, P. Piquini, and M. Hörner (2014). New J. Chem. 38, 2394.

    Article  CAS  Google Scholar 

  24. R. Stieler, F. Bublitz, E. S. Lang, and G. M. de Oliveira (2012). Polyhedron 31, 596.

    Article  CAS  Google Scholar 

  25. R. S. Chauhan, G. Kedarnath, A. Wadawale, A. L. Rheingold, A. Muñoz-Castro, R. Arratia-Perez, and V. K. Jain (2012). Organometallics 31, 1743.

    Article  CAS  Google Scholar 

  26. F. D. da Silva, C. A. D. P. Simões, S. S. dos Santos, and E. S. Lang (2017). ChemistrySelect 2, 2708.

    Article  Google Scholar 

  27. S. S. dos Santos, B. N. Cabral, U. Abram, and E. S. Lang (2013). J. Organomet. Chem. 723, 115.

    Article  Google Scholar 

  28. G. Kedarnath, V. K. Jain, A. Wadawale, and G. K. Dey (2009). Dalton Trans. 2009, 8378.

    Article  Google Scholar 

  29. K. K. Bhasin, V. Arora, T. M. Klapotke, and M.-J. Crawford (2004). Eur. J. Inorg. Chem. 2004, 4781.

    Article  Google Scholar 

  30. Bruker, SMART (Version 5.630), SAINT (Version 6.28) and SADABS (Version 2.06). Bruker AXS Inc., Madison, Wisconsin, USA, 2003.

  31. SHELXT (Version 6.12) G.M. Sheldrick, Acta Cryst. A71, 3 (2015).

  32. SHELXL (Version 6.12) G.M. Sheldrick, Acta Cryst. C71, 3 (2015).

  33. A. L. Spek (2015). Acta Cryst. C71, 9.

    Google Scholar 

  34. A. L. Spek (2003). J. Appl. Crystallogr 36, 7.

    Article  CAS  Google Scholar 

  35. A. L. Spek (2009). Acta Cryst. D65, 148.

    Google Scholar 

  36. J. A. García-Valenzuela (2017). Comments Inorg. Chem. 37, 99.

    Article  Google Scholar 

  37. H. G. Hecht, in Modern Aspects of Reflectance Spectroscopy, ed. by W. W. Wendlandt (Plenum Press, New York, 1968), pp. 6–9.

  38. A. B. Murphy (2007). Solar Energy Mater Solar Cells 91, 1326.

    Article  CAS  Google Scholar 

  39. Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. (Springer, New York, 2013), pp. 49–61.

    Book  Google Scholar 

  40. S. Bock, C. Kijatkin, D. Berben, and M. Imlau (2019). Appl. Sci. 9, 4933.

    Article  CAS  Google Scholar 

  41. M. Grätzel (2001). Nature 414, 338.

    Article  PubMed  Google Scholar 

  42. A. Kudo and Y. Miseki (2009). Chem. Soc. Rev. 38, 253.

    Article  CAS  PubMed  Google Scholar 

  43. N. Chouhan, R.-S. Liu, and J. Zhang, Photochemical Water Splitting: Materials and Applications. (CRC Press, Boca Raton, 2017), pp. 53–57.

    Book  Google Scholar 

  44. D. V. Wellia, Y. Kusumawati, and L. J. Diguna, M. I. Amal, in M. M. Khan, D. Pradhan, and Y. Sohn (eds.), Nanocomposites for Visible Light-Induced Photocatalysis (Springer, Cham, 2017), pp. 4–6.

    Google Scholar 

  45. O. Stroyuk, Solar Light Harvesting with Nanocrystalline Semiconductors. (Springer, Cham, 2018), pp. 1–6.

    Book  Google Scholar 

  46. E. S. Lang, D. F. Back, and G. M. de Oliveira (2010). J. Organomet. Chem. 695, 1966.

    Article  CAS  Google Scholar 

  47. C. B. Murray, C. R. Kagan, and M. G. Bawendi (2000). Annu. Rev. Mater. Sci. 30, 545.

    Article  CAS  Google Scholar 

  48. D. Yao, W. Xin, Z. Liu, Z. Wang, J. Feng, C. Dong, Y. Liu, B. Yang, H. Zhang, and A. C. S. Appl (2017). Mater. Interfaces 9, 9840.

    Article  CAS  Google Scholar 

  49. M. Z. Hu and T. Zhu (2015). Nanoscale Res. Lett. 10 (1), 469.

    Article  PubMed  PubMed Central  Google Scholar 

  50. F. Haque, T. Daeneke, K. Kalantar-zadeh, and J. Z. Ou (2018). Nano-Micro Lett. 10, 23.

    Article  Google Scholar 

  51. N. A. Gadjieva, A. M. Champsaur, M. L. Steigerwald, X. Roy, and C. Nuckolls (2020). Eur. J. Inorg. Chem. 2020, 1245.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq), the Commission for Improvement of Higher Education Personnel (Comissão de Aperfeiçoamento de Pessoal de Nível Superior—CAPES—Finance Code 001) via the CAPES-PrInt initiative, and the Rio Grande do Sul State Foundation for Research Support (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul—FAPERGS). We also are grateful to the PROBRAL-CAPES/DAAD program (88881.144118/2017-01) which made possible the work together with the Freie Universität Berlin. F.D.S. gratefully acknowledges a scholarship from PPGQ/UFSM CAPES/PROEX program. S.S.S. gratefully acknowledges grants sponsored by FIPE/CCNE/UFSM projects. The X-ray diffractometer, the FT-IR, the Raman, and the UV-Vis spectrometers were purchased with funding from FINEP/CT-Infra.

Funding

This work was funded by the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq) (Brazil), the Commission for Improvement of Higher Education Personnel (Comissão de Aperfeiçoamento de Pessoal de Nível Superior—CAPES) (Brazil), the Rio Grande do Sul State Foundation for Research Support (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul—FAPERGS), and the German Academic Exchange Service (Deustcher Akademischer Austauschdienst—DAAD) (Germany).

Author information

Authors and Affiliations

Authors

Contributions

FDS: Investigation, Validation, Formal analysis, Writing—Original Draft; ALH: Investigation, Validation; RAB: Formal analysis, Writing—Review & Editing, UA: Funding acquisition, Resources, Writing—Review & Editing, Project administration; ESL: Funding acquisition, Resources, Writing—Review & Editing, Project administration; SSS: Funding acquisition, Supervision, Resources, Methodology, Conceptualization, Writing—Original Draft, Writing—Review & Editing.

Corresponding author

Correspondence to Sailer Santos dos Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest nor competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.D., Hennemann, A.L., Burrow, R.A. et al. Bis(2-pyridyl)ditellane as a Precursor for [HgTe]-Based Clusters and Zwitterionic Compounds. J Clust Sci 33, 815–824 (2022). https://doi.org/10.1007/s10876-021-02128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02128-y

Keywords

Navigation