Skip to main content
Log in

Crystal field splitting, half metallic ferromagnetism, structural, mechanical and magneto-electronic properties of spinels type structure compounds MgX2O4 (X = Fe and Co) for spintronic applications

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

First-principle study has been conducted using the full potential linearized augmented plane wave plus local orbital method (FPLAPW + LO) within the scope of density functional theory with generalized gradient approximation (GGA) and Generalized Gradient Approximation plus Hubbard parameters U (GGA + U) as exchange correlation potentials to study the mechanical, structural, electronic and magnetic properties of two spinels type structure compounds MgX2O4 (X = Fe and Co). The structural parameters evaluated from the solution of equation of state with GGA are consistent with experiment. For the calculation of electronic as well as magnetic properties of these compounds, we have used the GGA + U formalism to treat the d state of transition metals Fe and Co more efficiently. Moreover, the crystal fields splitting for both of the compounds are also explored. The electronic band structure and density of states predicts the half metallic/metallic nature of MgFe2O4 and MgCo2O4, respectively. The spin polarized total magnetic moments of the compounds under investigation reveal the ferromagnetic behavior of these compounds. Moreover, the elastic properties of these compounds are also calculated with GGA and compared with available calculations. These compounds are founds to be elastically stable and ductile in nature. Half metallic/metallic ferromagnetic nature of MgFe2O4 and MgCo2O4, respectively, predicts the important of these spinels in spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Zada, H. Ullah, R. Zada, S. Zada, A. Laref, S. Azam, M. Irfan, Structure stability, half metallic ferromagnetism, magneto-electronic and thermoelectric properties of new zintl XCr2Bi2 (X= Ca, Sr) compounds for spintronic and renewable energy applications. Phys. B Condens. Matter 607, 412866 (2021)

    Article  Google Scholar 

  2. H. Ullah, S. Khalid, Exchange interactions, half metallic ferromagnetism, mechanical, thermal and magneto-electronic properties of full Heusler alloys Co2YGe (Y= Mn, Fe) for acoustical and spintronic devices. Phys. B Condens. Matter 615, 413060 (2021)

    Article  Google Scholar 

  3. N.W. Grimes, The spinels: versatile materials. Phys. Technol. 6(1), 22 (1975)

    Article  ADS  Google Scholar 

  4. O. Vozniuk, T. Tabanelli, N. Tanchoux, J.M.M. Millet, S. Albonetti, F. Di Renzo, F. Cavani, Mixed-oxide catalysts with spinel structure for the valorization of biomass: The chemical-loop reforming of bioethanol. Catalysts 8(8), 332 (2018)

    Article  Google Scholar 

  5. D. Darbar, M.R. Anilkumar, V. Rajagopalan, I. Bhattacharya, H.I. Elim, T. Ramakrishnappa, M.V. Reddy, Studies on spinel cobaltites, MCo2O4 (M= Mn, Zn, Fe, Ni and Co) and their functional properties. Ceram. Int. 44(5), 4630–4639 (2018)

    Article  Google Scholar 

  6. S.G. Krishnan, M.V. Reddy, M. Harilal, B. Vidyadharan, I.I. Misnon, M.H. Ab Rahim, R. Jose, Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim. Acta 161, 312–321 (2015)

    Article  Google Scholar 

  7. A.M. Ibarra-Ruiz, D.C. Rodríguez Burbano, J.A. Capobianco, Photoluminescent nanoplatforms in biomedical applications. Adv. Phys. X 1(2), 194–225 (2016)

    Google Scholar 

  8. F.D. Stoian, S. Holotescu, Experimental study of cooling enhancement using a Fe3O4 magnetic nanofluid, in an applied magnetic field. J. Phys. Conf. Series 547(1), 012044 (2014)

    Article  Google Scholar 

  9. R.A. Candeia, M.I.B. Bernardi, E. Longo, I.M.G. Santos, A.G. Souza, Synthesis and characterization of spinel pigment CaFe2O4 obtained by the polymeric precursor method. Mater. Lett. 58(5), 569–572 (2004)

    Article  Google Scholar 

  10. X. Wang, G. Yang, Z. Zhang, L. Yan, J. Meng, Synthesis of strong-magnetic nanosized black pigment ZnxFe (3–x) O4. Dyes Pigm. 74(2), 269–272 (2007)

    Article  Google Scholar 

  11. A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta, Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol–gel auto-combustion method. J. Magn. Magn. Mater. 323(15), 2049–2054 (2011)

    Article  ADS  Google Scholar 

  12. M.E. Arani, M.J.N. Isfahani, M.A. Kashi, Preparation and magnetic studies of nickel ferrite nanoparticles substituted by Sn4+ and Cu2+. J. Magn. Magn. Mater. 322(19), 2944–2947 (2010)

    Article  ADS  Google Scholar 

  13. V. Naidu, C. Balakumar, S.G. Selvan, C. Kailasanathan, Study of electrical and magnetic properties of praseodymium samarium doped novel magnesium ferrite. Int. J. Comput. Appl. 52(14), 975–8887 (2012)

    Google Scholar 

  14. Y. Köseoğlu, H.Ü. Kavas, A.B. Aktaş, Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles. Phys. Status Solidi (a) 203(7), 1595–1601 (2006)

    Article  ADS  Google Scholar 

  15. H.H. Kora, M. Taha, A. Abdelwahab, A.A. Farghali, S.I. El-dek, Effect of pressure on the geometric, electronic structure, elastic, and optical properties of the normal spinel MgFe2O4: a first-principles study. Mater. Res. Express 7(10), 106101 (2020)

    Article  Google Scholar 

  16. K. Schwarz, DFT calculations of solids with LAPW and WIEN2k. J. Solid State Chem. 176(2), 319–328 (2003)

    Article  ADS  Google Scholar 

  17. P. Blaha, K. Schwarz, G.K. Madsen, D. Kvasnicka, J. Luitz, wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties (2001)

  18. U. Ofe, M.U. Onuu, A.B. Udoimuk, Electronic and structural properties of CaH^ sub 2^ using GGA and GGA+ U approximation with WIEN 2K codes. Int. J. Innov. Appl. Stud. 7(3), 1071 (2014)

    Google Scholar 

  19. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B 57(3), 1505 (1998)

    Article  ADS  Google Scholar 

  20. F. Zhou, M. Cococcioni, C.A. Marianetti, D. Morgan, G. Ceder, First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Phys. Rev. B 70(23), 235121 (2004)

    Article  ADS  Google Scholar 

  21. H. Ullah, F.S. Kayani, R. Khenata, Insight into the mechanical, thermal, electronic and magnetic properties of cubic lanthanide built perovskites oxides PrXO3 (X= Al, Ga). Mater. Res. Express 6(12), 126105 (2019)

    Article  ADS  Google Scholar 

  22. R. Stadler, W. Wolf, R. Podloucky, G. Kresse, J. Furthmüller, J. Hafner, Ab initio calculations of the cohesive, elastic, and dynamical properties of CoSi 2 by pseudopotential and all-electron techniques. Phys. Rev. B 54(3), 1729 (1996)

    Article  ADS  Google Scholar 

  23. O.H. Nielsen, R.M. Martin, First-principles calculation of stress. Phys. Rev. Lett. 50(9), 697 (1983)

    Article  ADS  Google Scholar 

  24. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 45(367), 823–843 (1954)

    Article  Google Scholar 

  25. C.B. Lingam, K.R. Babu, S.P. Tewari, G. Vaitheeswaran, Structural, electronic, bonding, and elastic properties of NH3BH3: a density functional study. J. Comput. Chem. 32(8), 1734–1742 (2011)

    Article  Google Scholar 

  26. A.G. Abraham, A. Manikandan, E. Manikandan, S. Vadivel, S.K. Jaganathan, A. Baykal, P.S. Renganathan, Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites. J. Magn. Magn. Mater. 452, 380–388 (2018)

    Article  ADS  Google Scholar 

  27. S.Y. Mulushoa, M.T. Wegayehu, G.T. Aregai, N. Murali, M.S. Reddi, B.V. Babu, K. Samatha, Synthesis of spinel MgFe2O4 ferrite material and studying its structural and morphological properties using solid state method. Chem. Sci. 6(4), 653–661 (2017)

    Google Scholar 

  28. A.F. Syeda, M.N. Khan, Spin state of cobalt and electrical transport mechanism in MgCo2O4 system. J. Supercond. Novel Magn. 31(11), 3545–3551 (2018)

    Article  Google Scholar 

  29. S.A. Khandy, D.C. Gupta, DFT investigations on mechanical stability, electronic structure and magnetism in Co2TaZ (Z= Al, Ga, In) heusler alloys. Semiconductor Sci. Technol. 32(12), 125019 (2017)

    Article  ADS  Google Scholar 

  30. H.M. Ledbetter, Sound velocities and elastic-constant averaging for polycrystalline copper. J. Phys. D Appl. Phys. 13(10), 1879 (1980)

    Article  ADS  Google Scholar 

  31. X. Zhu, X. Gao, H. Song, G. Han, D.Y. Lin, Effects of vacancies on the mechanical properties of zirconium: an ab initio investigation. Mater. Des. 119, 30–37 (2017)

    Article  Google Scholar 

  32. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65(5), 349 (1952)

    Article  ADS  Google Scholar 

  33. W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys. 274(12), 573–587 (1889)

    Article  Google Scholar 

  34. F. Mouhat, F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90(22), 224104 (2014)

    Article  ADS  Google Scholar 

  35. X. Oudet, Magnetism in spinel and garnet structures. In Annales de la Fondation Louis de Broglie (Vol. 39, p. 147) (2014).

  36. A. Sankaramahalingam, J.B. Lawrence, Structural, optical, and magnetic properties of MgFe2O4 synthesized with addition of copper. Synth. React. Inorg. Met.-Org., Nano-Met. Chem. 42(1), 121–127 (2012)

    Article  Google Scholar 

  37. Y. Sharma, N. Sharma, G.S. Rao, B.V.R. Chowdari, Lithium-storage and cycleability of nano-CdSnO3 as an anode material for lithium-ion batteries. J. Power Sources 192(2), 627–635 (2009)

    Article  ADS  Google Scholar 

  38. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J. Appl. Phys. 84(9), 4891–4904 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayat Ullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Ullah, H., AlObaid, A.A. et al. Crystal field splitting, half metallic ferromagnetism, structural, mechanical and magneto-electronic properties of spinels type structure compounds MgX2O4 (X = Fe and Co) for spintronic applications. Eur. Phys. J. Plus 136, 770 (2021). https://doi.org/10.1140/epjp/s13360-021-01737-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01737-w

Navigation