Skip to main content
Log in

Accelerating universe in higher dimensional space time: an alternative approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We have discussed here a higher dimensional cosmological model and explained the recent acceleration with a Chaplygin type of gas. Dimensional reduction of extra space is possible in this case. Our solutions are general in nature because all the well known results of 4D Chaplygin driven cosmology are recovered when \(d = 0\). We have drawn the best fit graph using the data obtained by the differential age method and it is seen that the graph favours only one extra dimension. That means the Chaplygin gas is apparently dominated by a 5D world. Relevant to point out that the final equation in this case are highly nonlinear in nature. Naturally it is not possible to obtain explicit solution of the 4D scale factor with time. To circumvent this difficulty, we consider a first order approximation of the key equation which has made it possible to get time explicit solution of 4D scale factor in exact form as well as the expression of extra dimensions. It may be pointed out that for large four dimensional scale factor this solution mimics \(\Lambda \)CDM model. An analysis of flip time is also studied both analytically and graphically in some detail. It clearly shows that early flip occurs for higher dimensions. It is also seen that the rate of dimensional reduction is faster for higher dimensions. So we may conclude that the effect of compactification of extra dimension helps the acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

Notes

  1. By rescaling of time parameter the Eq. (33) may also be written as \(w(t) = -\frac{2M}{k} tanh^2 \omega (t-t_0)\), when \(t = t_0\), \(w(t) =0\), i.e., \(p = 0\) implying dust dominated universe

References

  1. U. Alam, V. Sahni, A.A. Starobinsky, JCAP 0406, 008 (2004)

    Article  ADS  Google Scholar 

  2. N. Ahmed, S.Z. Alamri, Res. Astron. Astrophys. 18, 123 (2018)

    Article  ADS  Google Scholar 

  3. C. Csaba, N. Kaloper, J. Terning, Phys. Rev. Lett. 88, 161302 (2002)

    Article  ADS  Google Scholar 

  4. H. Alnes, M. Amarzguioui, Ø. Grøn, JCAP 01, 007 (2007)

    Article  ADS  Google Scholar 

  5. D. Panigrahi, S. Chatterjee, Acta Phys. Pol. B 50, 1555 (2019)

    Article  ADS  Google Scholar 

  6. T. Padmanabhan - ‘Understanding our Universe : Current status and open issues’ and references therein, gr- qc/0503107

  7. D. Panigrahi, S. Chatterjee, Gen. Relativ. Grav. 40, 883 (2008)

    Article  Google Scholar 

  8. A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  Google Scholar 

  9. D. Panigrahi, S. Chatterjee, Y.Z. Zhang, Int. J. Mod. Phys. A 21, 6491 (2006)

    Article  ADS  Google Scholar 

  10. S. Chatterjee, D. Panigrahi, In: A.I.P. Conf, Proc. 1115, 335 (2009)

  11. A. Einstein, The Meaning of Relativity (Princeton Univ. Press, Princeton, 1956)

    MATH  Google Scholar 

  12. J.A. Wheeler, Einstein’s Vision (Springer, Berlin, 1968)

    Book  Google Scholar 

  13. P.S. Wesson, Space-Time-Matter (World Sci, Singapore, 1999)

    Book  Google Scholar 

  14. K.A. Milton, Grav. Cosm. 9, 66 (2003)

    ADS  Google Scholar 

  15. E. Piedipalumbo et al., Gen. Relativ. Grav. 44, 2611 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  16. K.A. Bronnikov, S.A. Kononogov, V. Melnikov, S.G. Rubin, Grav. Cosm. 14, 230 (2008)

    Article  ADS  Google Scholar 

  17. M. Eingorn, A. Zhuk, Class. Quantum Grav. 27, 055002 (2010)

    Article  ADS  Google Scholar 

  18. M.K. Mak, T. Harko, Phys. Rev. D 71, 104022 (2005)

    Article  ADS  Google Scholar 

  19. R. Herrera, Phys. Lett. B 664, 149 (2008). arxiv: 0805.1005

    Article  ADS  Google Scholar 

  20. C. Ranjit, S. Chakraborty, U. Debnath, Eur. Phys. J. Plus 128, 53 (2013). arxiv: 1211.2785

    Article  Google Scholar 

  21. M. Salti et al., Ann. Phys. 390, 131 (2018)

    Article  ADS  Google Scholar 

  22. Z. K. Guo and Y. Z. Zhang, astro-ph/0506091

  23. D. Panigrahi, In: Published by IOP conference series. Journal of Physics: Conf. Series 1251, 012039 (2019)

  24. S. Randjber-Daemi, A. Salam, J. Strathdee, Phys. Lett. 135B, 388 (1984)

    Article  ADS  Google Scholar 

  25. A. Kamenshichik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  Google Scholar 

  26. U. Debnath, A. Banerjee, S. Chakraborty, Class. Quant. Grav. 21, 5609 (2004)

    Article  ADS  Google Scholar 

  27. C. Romerio, R. Tavakol, R. Zalaletdinov, Gen. Rel. Grav. 28, 365 (1996)

    Article  ADS  Google Scholar 

  28. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  29. D. Panigrahi, S. Chatterjee, Grav. Cosm. 17, 18 (2011)

    Article  ADS  Google Scholar 

  30. D. Panigrahi, In: Published by AIP, CP -1316, ‘Search for the fundamental theory’ - edited by R. L. Amoroso, P. Rowlands and S. Jeffers, PP-459, (2010)

  31. P. Mukherjee, N. Banerjee, Phys. Rev. D 103, 123530 (2021)

  32. M. Seikel, S. Yahya, R. Maartens, C. Clarkson, Phys. Rev. D 86, 083001 (2012)

    Article  ADS  Google Scholar 

  33. J. Simon, L. Verde, R. Jimennez, Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  34. D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, S.A. Stanford, JCAP 02, 008 (2010)

    Article  ADS  Google Scholar 

  35. E. Gaztanaga, A. Cabre, L. Hui, MNRAS 399, 1663 (2009)

    Article  ADS  Google Scholar 

  36. M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, A. Cimatti, JCAP 7, 053 (2012)

    Article  ADS  Google Scholar 

  37. T. Delubac, J. Rich, S. Bailey et al., Astron. Astrophys. A96, 552 (2013)

    Google Scholar 

  38. J. Magana, M.H. Amante, M.A. Garcia-Aspeitia, V. Motta, MNRAS 476, 1036 (2018)

    Article  ADS  Google Scholar 

  39. J.J. Geng, R.Y. Guo, A. Wang, J.F. Zhang, X. Zhang, arXiv:1806.10735

  40. G. Sethi, S.K. Singh, P. Kumar, Int. J. Mod. Phys. D 15, 1089 (2006)

    Article  ADS  Google Scholar 

  41. C. Zhang et al., RAA (ZRes. Astron. Astrophys.) 14, 1221 (2014)

    Article  ADS  Google Scholar 

  42. M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde, D. Thomas, A. Citro, R. Tojeiro, D. Wilkinson, JCAP 05, 014 (2016)

  43. A.L. Ratsimbazafy, S.I. Loubser, S.M. Crawford, C.M. Cress, B.A. Bassett, R.C. Nichol, R. Visnen, MNRAS 467, 3239 (2017)

    Article  ADS  Google Scholar 

  44. M. Moresco, MNRAS 467, L16 (2015)

Download references

Acknowledgements

DP acknowledges financial support of Sree Chaitanya College, Habra for a Minor Research project vide no SCC/MRP/2019-20/03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Panigrahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panigrahi, D., Paul, B.C. & Chatterjee, S. Accelerating universe in higher dimensional space time: an alternative approach. Eur. Phys. J. Plus 136, 771 (2021). https://doi.org/10.1140/epjp/s13360-021-01754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01754-9

Navigation