Skip to main content
Log in

Micro-inertia effects on existence of attractors for Form II Mindlin’s strain gradient viscoelastic plate

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we study the long-time dynamics of solutions to strain gradient viscoelastic plates equations taking into account micro-inertia effects and subjected to three different types of external nonlinear terms. First we derive briefly the equations of strain gradient viscoelastic plate corresponding to anti-plane shear deformations which is assumed to be consistent with the Mindlin Form II. Based on semigroup theory, we prove the existence and uniqueness of global solution. Then, we show that the existence of finite dimensional global attractors depends on the value of the micro-inertia parameter (whether or not zero) and on the assumptions on the external non-linearities. Sufficient conditions on existence of exponential and global minimal attractors can be deduced. Finally, we show the upper-semicontinuity of global attractors with respect to the micro-inertia parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aouadi, M., Passarella, F., Tibullo, V.: Exponential stability in Mindlin’s Form II gradient thermoelasticity with microtemperatures of type III. Proc. R. Soc. A 476, 20200459 (2020)

    Article  MathSciNet  Google Scholar 

  2. Aouadi, M., Amendola, A., Tibullo, V.: Asymptotic behavior in Form II Mindlin’s strain gradient theory for porous thermoelastic diffusion materials. J. Therm. Stress. 43, 191–209 (2020)

    Article  Google Scholar 

  3. Aouadi, M.: Global and exponential attractors for extensible thermoelastic plate with time-varying delay. J. Differ. Equ. 269, 4079–4115 (2020)

    Article  MathSciNet  Google Scholar 

  4. Aouadi, M.: Quasi-stability and upper semicontinuity for coupled parabolic equations with memory. Stud. Appl. Math. 145, 586–621 (2020)

    Article  MathSciNet  Google Scholar 

  5. Aouadi, M., Miranville, A.: Smooth attractor for a nonlinear thermoelastic diffusion thin plate based on Gurtin-Pipkin’s model. Asymp. Anal. 95, 129–160 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  7. Barbosa, A., Fu Ma, T.: Long-time dynamics of an extensible plate equation with thermal memory. J. Math. Anal. Appl. 416, 143–165 (2014)

    Article  MathSciNet  Google Scholar 

  8. Bucci, F., Chueshov, I.: Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete Contin. Dyn. Syst. 22, 557–586 (2008)

    Article  MathSciNet  Google Scholar 

  9. Chueshov, I.: Introduction to the Theory of Infinite-Dimensional Dissipative Systems. Acta, Kharkov, : in Russian, p. 2002. Acta, Kharkov, English translation (1999)

  10. Chueshov, I., Lasiecka, I.: Attractors for second order evolution equations with a nonlinear damping. J. Dyn. Differ. Equ. 16, 469–512 (2004)

    Article  MathSciNet  Google Scholar 

  11. Chueshov, I., Lasiecka, I.: Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc. 195, no. 912, Providence, (2008)

  12. Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations. Well-Posedness and Long Time Dynamics, Springer Monographs in Mathematics, Springer, New York, (2010)

  13. Chueshov, I., Lasiecka, I., Webster Justin, T.: Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping. Commun. Part. Differ. Equ. 39, 1965–1997 (2014)

    Article  Google Scholar 

  14. Ciarletta, M., Ieşan, D.: Non-classical Elastic Solids, Pitman Research Notes in Mathematical Series, vol. 293. John Wiley & Sons Inc, New York (1993)

    MATH  Google Scholar 

  15. Conti, M., Geredeli, P.G.: Existence of smooth global attractors for nonlinear viscoelastic equations with memory. J. Evol. Equ. 15, 533–558 (2015)

    Article  MathSciNet  Google Scholar 

  16. Coti Zelati, M., Dell’Oro, F., Pata, V.: Energy decay of type III linear thermoelastic plates with memory. J. Math. Anal. Appl. 401, 357–366 (2013)

    Article  MathSciNet  Google Scholar 

  17. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Rational Mech. Anal. 37, 297–308 (1970)

    Article  MathSciNet  Google Scholar 

  18. Fastovska, T.: Upper semicontinuous attractor for a 2D Mindlin–Timoshenko thermo-viscoelastic model with memory. Nonlinear Anal. TMA 71, 4833–4851 (2009)

    Article  MathSciNet  Google Scholar 

  19. Feng, B., Jorge Silva, M.A., Caixeta, A.H.: Long-time behavior for a class of semi-linear viscoelastic Kirchhoff beams/plates. Appl. Math. Optim. 82, 657–686 (2020)

    Article  MathSciNet  Google Scholar 

  20. Giorgi, C., Marzocchi, A., Pata, V.: Asymptotic behavior of a semilinear problem in heat conduction with memory. NoDEA Nonlinear Differ. Equ. Appl. 5, 333–354 (1998)

    Article  MathSciNet  Google Scholar 

  21. Grasselli, M., Pata, V.: Uniform attractors of nonautonomous systems with memory. In: Lorenzi, A., Ruf, B. (Eds.) Evolution Equations, Semigroups and Functional Analysis, pp. 155–178, Progr. Nonlinear Differential Equations Appl. Birkhauser, Boston (2002)

  22. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  Google Scholar 

  23. Grisvard, P.: Elliptic Problems in Non-Smooth Domains. Pittman, Boston (1985)

    MATH  Google Scholar 

  24. Jorge Silva, M.A., Muñoz Rivera, J.E., Racke, R.: On a classes of nonlinear viscoelastic Kirchhoff plates: well-posedness and generay decay rates. Appl. Math. Optim. 73, 165–194 (2016)

  25. Jorge Silva, M.A., Gomes Tavares, E.H.: Sharp decay rates for a class of nonlinear viscoelastic plate models. Commun. Contemp. Math. 20, 1750010 (2018)

    Article  MathSciNet  Google Scholar 

  26. Jorge Silva, M.A., Narciso, V.: Attractors and their properties for a class of nonlocal extensible beams. Discrete Contin. Dyn. Syst. 35, 985–1008 (2015)

    Article  MathSciNet  Google Scholar 

  27. Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Dafermos, C. M., Pokorny, M. (eds.) Handbook of Differential Equations, Evolutionary Equations. Volume 4, Chapter 3. Elsevier, Amsterdam, Boston (2008)

  28. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  29. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  Google Scholar 

  30. Nayfeh, A., Mook, D.T.: Nonlinear Oscillations. Wiley, (1979)

  31. Pata, V., Quintanilla, R.: On the decay of solutions in nonsimple elastic solids with memory. J. Math. Anal. Appl. 363, 19–28 (2010)

    Article  MathSciNet  Google Scholar 

  32. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  33. Potomkin, M.: Asymptotic behavior of thermoviscoelastic Berger plate. Commun. Pure Appl. Anal. 9, 161–192 (2010)

    Article  MathSciNet  Google Scholar 

  34. Raugel, G.: Global Attractors in Partial Differential Equations. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2, pp. 885–982. Elsevier, Amsterdam (2002)

    Google Scholar 

  35. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Math. Pura Appl. 148, 5–96 (1987)

    Google Scholar 

  36. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  Google Scholar 

  37. Zhou, Y.L., Fu, H.Y.: Nonlinear hyperbolic systems of higher order generalized Sine-Gordon type. Acta Math. Sinica 26, 234–249 (1983)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for her/his critical review and valuable comments which thoroughly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Aouadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix we show in the case \(i=1\) when \(h=0\), two interesting properties to \(C^2\)-vector field. Then we provide two examples of vector fields illustrating both properties. To this end, we first quote a lemma due to Zhou and Fu [37].

Lemma 6.1

Assume that \(G(z_1,\ldots ,z_n)\) is a k-times continuously differentiable function with respect to variables \(z_1,\ldots ,z_n\) and \(z_j\in L^\infty ([0,T]; H^k(\Omega ))\) \((j=1,\ldots ,n)\). Then

$$\begin{aligned} \Vert \frac{\partial ^k}{\partial x^k}G(z_1(\cdot ,t),\ldots ,z_n(\cdot ,t))\Vert ^2\le C({\overline{M}},k,n)\sum _{j=1}^{n}\Vert z_j(t)\Vert ^2_{H^k} \end{aligned}$$
(6.1)

where \({\overline{M}}=\max _{1\le j\le n}\max _{(x,t)\in \Omega \times [0,T]} |z_j(x,t)|,\) \(C({\overline{M}},k,n)\) is a positive constant depending only on \({\overline{M}},\ k\) and n.

Now we state our main result of this section.

Lemma 6.2

Let \(F\ :\ {\mathbb {R}}^2 \rightarrow {\mathbb {R}}^2\) be a \(C^2\)-vector field given by \(F = (F_1, F_2)\). Then, there exist two constants \(K_i = K_i({\overline{M}},k,n)> 0,\ j = 1, \ldots ,n,\ i=1,2\) (\(n=1,2\)) such that

$$\begin{aligned} \Vert \text {div}( F (\nabla \ u))\Vert \le K_1 \Vert \Delta u\Vert , \end{aligned}$$
(6.2)

and

$$\begin{aligned} \Vert \text {div}( F (\nabla \ u_1))-\text {div}( F (\nabla \ u_2))| \le K_2 \Vert \Delta u_1- \Delta u_2\Vert , \end{aligned}$$
(6.3)

where \({\overline{M}}=\max _{1\le j\le 2}\max _{(x,t)\in \Omega \times [0,T]} |\frac{\partial u_j}{\partial x_j}(x,t)|.\)

Proof

Since \(n=1,2\), for \(u \in L^\infty (0, T; V^2)\) we have

$$\begin{aligned} \text {div}\ F(\nabla u) =\sum _{j=1}^{2}\frac{\partial }{\partial x_j}F_j \left( \frac{\partial u_j}{\partial x_j}\right) . \end{aligned}$$

For simplicity, the same constant \(C_{{\overline{M}}}> 0\) will be used to denote several different constants depending on \({{\overline{M}}}\) in the next estimates. From (6.1), by taking \(z=\nabla u\), one can conclude that

$$\begin{aligned} \Vert \text {div}\ F(\nabla u)\Vert ^2\le C_{{\overline{M}}}\Vert \nabla u\Vert ^2_{H^1}\le C_{{\overline{M}}}\Vert \Delta u\Vert ^2 \end{aligned}$$

from which (6.2) follows.

Since \(F\in C^2({\mathbb {R}}^2)\), by applying the mean value inequality we obtain

$$\begin{aligned} |\text {div}\ F(\nabla u^1)-\text {div}\ F(\nabla u^2)|\le \Big |\Big (\text {div}\ F\left( (1-\chi )\nabla u^1+\chi \nabla u^2\right) \Big )'\Big ||\nabla u^1-\nabla u^2|_{H^1}. \end{aligned}$$
(6.4)

We infer from (6.1) that

$$\begin{aligned} \Big \Vert \Big (\text {div}\ F\left( (1-\chi )\nabla u^1+\chi \nabla u^2\right) \Big )'\Big \Vert ^2\le C_{{\overline{M}}}\Vert (1-\chi )\nabla u^1+\chi \nabla u^2)\Vert ^2_{H^2}. \end{aligned}$$

Since \(|\nabla u^1|,\ |\nabla u^1|\le {\overline{M}}\), we get

$$\begin{aligned} \Big \Vert \Big (\text {div}\ F\left( (1-\chi )\nabla u^1+\chi \nabla u^2\right) \Big )'\Big \Vert \le C_{{\overline{M}}}. \end{aligned}$$

Consequently, (6.4) becomes

$$\begin{aligned} \Vert \text {div}\ F(\nabla u^1)-\text {div}\ F(\nabla u^2)\Vert \le C_{{\overline{M}}}|\Delta u^1-\Delta u^2| \end{aligned}$$

which gives (6.3) immediately. \(\square \)

Remark 6.1

One can prove the above lemma from (2.29) (see [24, Lemma 4.1] for more details).

In the following we give two examples of vector fields (inspired from [19, 24]) satisfying (2.29), (2.31), (6.2) and (6.3).

  1. 1.

    Let us consider \( F(z) =\lambda z,\ \lambda \in (0,1]\). It follows that condition (2.29) holds true for any \(k_j,\ p_j\ge 1\), \(j=1,2\) (see [19, 24]). Moreover, we note that \(F = \lambda \nabla \wp \) is a conservative vector field, such that \(\wp (z)=\frac{\lambda }{2}|z|^2\) and then condition (2.31) is readily verified for any \(\eta _3,\ \beta _3 \ge 0\) [24]. Now, we show that (6.2) and (6.3) are satisfied. Since the rotational of a gradient is zero, the vector field \( F(\nabla u) =\lambda \nabla u\) generates the following operator \(\text {div}\ F(\nabla u) = \lambda \Delta u\), which satisfies (6.2). Also we have

    $$\begin{aligned} \Vert \text {div}(F(\nabla u^1))-\text {div}(F(\nabla u^2))\Vert =\lambda \left\| \Delta u^1-\Delta u^2\right\| \le \left\| \Delta u^1-\Delta u^2\right\| \end{aligned}$$

    which satisfies (6.3).

  2. 2.

    We give another example of vector field satisfying (2.29), (2.31), (6.2) and (6.3). Jorge Silva et al. [24] presented an example (Example 4.14) of vector field

    $$\begin{aligned} F(z)=\frac{z}{|z|^2+1},\quad \forall z\in {\mathbb {R}}^n\end{aligned}$$
    (6.5)

    that satisfies (2.29). Moreover, they showed that \(F=\nabla f\) where the potential function given by \(f =(z)=\ln (|z|^2+1)\) satisfies (2.31) for any \(z \in {\mathbb {R}}^n\) as well. First, we will show that the vector field given by (6.5) satisfies (6.2). It is easy to check that \(F\in C^2({\mathbb {R}}^2)\). Taking account of \(u \in L^\infty (0, T; V^2)\) and \(z=\nabla u\), we have

    $$\begin{aligned} \Vert \text {div}(F(\nabla u))\Vert= & {} \left\| \text {div}(\frac{\nabla u}{|\nabla u|^2+1})\right\| \\= & {} \left\| \frac{\Delta u}{|\nabla u|^2+1}-2\frac{\nabla (|\nabla u|^2)\cdot \nabla u}{( |\nabla u|^2+1)^2}\right\| \\\le & {} \Vert {\Delta u}\Vert +2\left\| \frac{\nabla (|\nabla u|^2)\cdot \nabla u}{( |\nabla u|^2+1)^2}\right\| \\= & {} \Vert \Delta u\Vert +2\left\| \frac{u_x^2u_{xx}+2u_xu_yu_{xy}+u_y^2u_{yy}}{( u_x^2+u_y^2+1)^2}\right\| \\\le & {} \Vert \Delta u\Vert +C_1\Vert \Delta u\Vert \le C\Vert \Delta u\Vert , \end{aligned}$$

    where \(\nabla (|\nabla u|^2)=2(u_xu_{xx}+u_yu_{yx},u_xu_{xy}+u_yu_{yy})\). Now, we will show that (6.5) satisfies (6.3). We have

    $$\begin{aligned}&\Vert \text {div}(F(\nabla u^1))-\text {div}(F(\nabla u^2))\Vert \\&\quad =\left\| \text {div}(\frac{\nabla u^1}{|\nabla u^1|^2+1})-\text {div}(\frac{\nabla u^2}{|\nabla u^2|^2+1})\right\| \\&\quad \le \left\| \frac{\Delta u^1}{|\nabla u^1|^2+1}-2\frac{\nabla (|\nabla u^1|^2)\cdot \nabla u^1}{(|\nabla u^2|^2+1)^2}-\frac{\Delta u^2}{|\nabla u^2|^2+1}+2\frac{\nabla (|\nabla u^2|^2)\cdot \nabla u^2}{( |\nabla u^2|^2+1)^2}\right\| \\&\quad \le \left\| \frac{\Delta u^1-\Delta u^2}{|\nabla u^1|^2+1}-\frac{\Delta u^2(|\nabla u^2|^2-|\nabla u^1|^2)}{(|\nabla u^1|^2+1)(|\nabla u^2|^2+1)}\right\| \\&\qquad +\, 2\left\| \frac{\nabla (|\nabla u^2|^2)\cdot \nabla u^2}{( |\nabla u^2|^2+1)^2}-\frac{\nabla (|\nabla u^1|^2)\cdot \nabla u^1}{( |\nabla u^2|^2+1)^2}\right\| \end{aligned}$$

    Since \(\Vert \nabla u^1\Vert \), \(\Vert \nabla u^2\Vert \le {\overline{M}}\), we obtain

    $$\begin{aligned}&\left\| \frac{\Delta u^1-\Delta u^2}{|\nabla u^1|^2+1}-\frac{\Delta u^2(|\nabla u^2|^2-|\nabla u^1|^2)}{(|\nabla u^1|^2+1)(|\nabla u^2|^2+1)}\right\| \\&\quad \le \Vert \Delta u^1-\Delta u^2\Vert +\Vert \Delta u^2(|\nabla u^2|^2-|\nabla u^1|^2)\Vert \\&\quad \le \Vert \Delta u^1-\Delta u^2\Vert +\Vert \Delta u^2\Vert \Vert \nabla u^2+\nabla u^1\Vert \Vert \nabla u^2-\nabla u^1\Vert \\&\quad \le \Vert \Delta u^1-\Delta u^2\Vert +C_{{\overline{M}}}\Vert \Delta u^1-\Delta u^2\Vert \\&\quad \le C_{{\overline{M}}}\Vert \Delta u^1-\Delta u^2\Vert . \end{aligned}$$

    By applying the above procedure, one can obtain

    $$\begin{aligned} 2\left\| \frac{\nabla (|\nabla u^2|^2)\cdot \nabla u^2}{( |\nabla u^2|^2+1)^2}-\frac{\nabla (|\nabla u^1|^2)\cdot \nabla u^1}{( |\nabla u^2|^2+1)^2}\right\| \le C_{{\overline{M}}}\Vert \Delta u^1-\Delta u^2\Vert . \end{aligned}$$

    By collecting the above estimates, we get

    $$\begin{aligned} \Vert \text {div}( F (\nabla u^1))-\text {div}( F (\nabla u^2))\Vert \le C_{{\overline{M}}}\Vert \Delta u^1-\Delta u^2\Vert \end{aligned}$$

    from which we conclude that (6.3) is verified.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouadi, M. Micro-inertia effects on existence of attractors for Form II Mindlin’s strain gradient viscoelastic plate. Nonlinear Differ. Equ. Appl. 28, 52 (2021). https://doi.org/10.1007/s00030-021-00715-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-021-00715-6

Mathematics Subject Classification

Keywords

Navigation