Skip to main content

Advertisement

Log in

Sensory defunctionalization induced by 8% topical capsaicin treatment in a model of ultraviolet-B-induced cutaneous hyperalgesia

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Subpopulations of primary nociceptors (C- and Aδ-fibers), express the TRPV1 receptor for heat and capsaicin. During cutaneous inflammation, these afferents may become sensitized, leading to primary hyperalgesia. It is known that TRPV1+ nociceptors are involved in heat hyperalgesia; however, their involvement in mechanical hyperalgesia is unclear. This study explored the contribution of capsaicin-sensitive nociceptors in the development of mechanical and heat hyperalgesia in humans following ultraviolet-B (UVB) irradiation. Skin areas in 18 healthy volunteers were randomized to treatment with 8% capsaicin/vehicle patches for 24 h. After patches removal, one capsaicin-treated area and one vehicle area were irradiated with 2xMED (minimal erythema dose) of UVB. 1, 3 and 7 days post-UVB exposure, tests were performed to evaluate the development of UVB-induced cutaneous hyperalgesia: thermal detection and pain thresholds, pain sensitivity to supra-threshold heat stimuli, mechanical pain threshold and sensitivity, touch pleasantness, trans-epidermal water loss (TEWL), inflammatory response, pigmentation and micro-vascular reactivity. Capsaicin pre-treatment, in the UVB-irradiated area (Capsaicin + UVB area), increased heat pain thresholds (P < 0.05), and decreased supra-threshold heat pain sensitivity (P < 0.05) 1, 3 and 7 days post-UVB irradiation, while mechanical hyperalgesia resulted unchanged (P > 0.2). No effects of capsaicin were reported on touch pleasantness (P = 1), TEWL (P = 0.31), inflammatory response and pigmentation (P > 0.3) or micro-vascular reactivity (P > 0.8) in response to the UVB irradiation. 8% capsaicin ablation predominantly defunctionalizes TRPV1+-expressing cutaneous nociceptors responsible for heat pain transduction, suggesting that sensitization of these fibers is required for development of heat hyperalgesia following cutaneous UVB-induced inflammation but they are likely only partially necessary for the establishment of robust primary mechanical hyperalgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Data will be made available on reasonable request.

References

  • Akdeniz M, Gabriel S, Lichterfeld-Kottner A et al (2018) Transepidermal water loss in healthy adults: a systematic review and meta-analysis update. Br J Dermatol 179:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T, Carstens E (2013) Neural processing of itch. Neuroscience 250:697–714

    Article  CAS  PubMed  Google Scholar 

  • Ali Z, Meyer RA, Campbell JN (1996) Secondary hyperalgesia to mechanical but not heat stimuli following a capsaicin injection in hairy skin. Pain 68:401–411

    Article  CAS  PubMed  Google Scholar 

  • Anand P, Bley K (2011) Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br J Anaesth 107:490–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen HH, Arendt-Nielsen L, Elberling J (2017a) Topical capsaicin 8% for the treatment of neuropathic itch conditions. Clin Exp Dermatol 42:596–598

    Article  CAS  PubMed  Google Scholar 

  • Andersen HH, Marker JB, Hoeck EA et al (2017b) Antipruritic effect of pretreatment with topical capsaicin 8% on histamine-and cowhage-evoked itch in healthy volunteers: a randomized, vehicle-controlled, proof-of-concept trial. Br J Dermatol 177:107–116

    Article  CAS  PubMed  Google Scholar 

  • Andersen HH, Lo Vecchio S, Elberling J et al (2018) UVB-and NGF-induced cutaneous sensitization in humans selectively augments cowhage-and histamine-induced pain and evokes mechanical hyperknesis. Exp Dermatol 27:258–267

    Article  CAS  PubMed  Google Scholar 

  • Angst MS, Clark JD, Carvalho B et al (2008) Cytokine profile in human skin in response to experimental inflammation, noxious stimulation, and administration of a COX-inhibitor: a microdialysis study. Pain 139:15–27

    Article  CAS  PubMed  Google Scholar 

  • Ayajiki K, Fujioka H, Shinozaki K, Okamura T (2005) Effects of capsaicin and nitric oxide synthase inhibitor on increase in cerebral blood flow induced by sensory and parasympathetic nerve stimulation in the rat. J Appl Physiol 98:1792–1798

    Article  CAS  PubMed  Google Scholar 

  • Backonja M, Wallace MS, Blonsky ER et al (2008) NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomised, double-blind study. Lancet Neurol 7:1106–1112

    Article  CAS  PubMed  Google Scholar 

  • Benrath J, Gillardon F, Zimmermann M (2001) Differential time courses of skin blood flow and hyperalgesia in the human sunburn reaction following ultraviolet irradiation of the skin. Eur J Pain 5:155–167

    Article  CAS  PubMed  Google Scholar 

  • Berardesca E, Maibach HI, Wilhelm K-P (2013) Non invasive diagnostic techniques in clinical dermatology. Springer, Berlin

    Google Scholar 

  • Bishop T, Hewson DW, Yip PK et al (2007) Characterisation of ultraviolet-B-induced inflammation as a model of hyperalgesia in the rat. Pain 131:70–82

    Article  CAS  PubMed  Google Scholar 

  • Bishop T, Ballard A, Holmes H et al (2009) Ultraviolet-B induced inflammation of human skin: characterisation and comparison with traditional models of hyperlagesia. Eur J Pain 13:524–532

    Article  CAS  PubMed  Google Scholar 

  • Bishop T, Marchand F, Young AR et al (2010) Ultraviolet-B-induced mechanical hyperalgesia: a role for peripheral sensitisation. Pain 150:141–152

    Article  CAS  PubMed  Google Scholar 

  • Burks TF, Buck SH, Miller MS (1985) Mechanisms of depletion of substance P by capsaicin. In: Federation proceedings, p 2531–2534

  • Caterina MJ, Rosen TA, Tominaga M et al (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    Article  CAS  PubMed  Google Scholar 

  • Cavanaugh DJ, Lee H, Lo L et al (2009) Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci 106:9075–9080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W, Yang F, Takanishi CL, Zheng J (2007) Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J Gen Physiol 129:191–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen JD, Lo Vecchio S, Elberling J et al (2019) Assessing punctate administration of beta-alanine as a potential human model of non-histaminergic itch. Acta Derm Venereol 99:222–223

    Article  CAS  PubMed  Google Scholar 

  • Clough GF, Church MK (2002) Vascular responses in the skin: an accessible model of inflammation. Physiology 17:170–174

    Article  CAS  Google Scholar 

  • Clydesdale GJ, Dandie GW, Muller HK (2001) Ultraviolet light induced injury: immunological and inflammatory effects. Immunol Cell Biol 79:547–568

    Article  CAS  PubMed  Google Scholar 

  • Comunanza V, Carbone E, Marcantoni A et al (2011) Calcium-dependent inhibition of T-type calcium channels by TRPV1 activation in rat sensory neurons. Pflügers Arch J Physiol 462:709

    Article  CAS  Google Scholar 

  • Dawes JM, Calvo M, Perkins JR et al (2011) CXCL5 mediates UVB irradiation–induced pain. Sci Transl Med 3:90ra60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubin AE, Patapoutian A (2010) Nociceptors: the sensors of the pain pathway. J Clin Invest 120:3760–3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dworkin RH, O’Connor AB, Backonja M et al (2007) Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 132:237–251

    Article  CAS  PubMed  Google Scholar 

  • Fattori V, Hohmann M, Rossaneis A et al (2016) Capsaicin: current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules 21:844

    Article  PubMed Central  CAS  Google Scholar 

  • Forst T, Pohlmann T, Kunt T et al (2002) The influence of local capsaicin treatment on small nerve fibre function and neurovascular control in symptomatic diabetic neuropathy. Acta Diabetol 39:1–6

    Article  CAS  PubMed  Google Scholar 

  • Gooding SMD, Canter PH, Coelho HF et al (2010) Systematic review of topical capsaicin in the treatment of pruritus. Int J Dermatol 49:858–865

    Article  PubMed  Google Scholar 

  • Gustorff B, Anzenhofer S, Sycha T et al (2004a) The sunburn pain model: the stability of primary and secondary hyperalgesia over 10 hours in a crossover setting. Anesth Analg 98:173–177

    Article  PubMed  Google Scholar 

  • Gustorff B, Hoechtl K, Sycha T et al (2004b) The effects of remifentanil and gabapentin on hyperalgesia in a new extended inflammatory skin pain model in healthy volunteers. Anesth Analg 98:401–407

    Article  CAS  PubMed  Google Scholar 

  • Gustorff B, Sycha T, Lieba-Samal D et al (2013) The pattern and time course of somatosensory changes in the human UVB sunburn model reveal the presence of peripheral and central sensitization. Pain 154:586–597

    Article  PubMed  Google Scholar 

  • Haratake A, Uchida Y, Schmuth M et al (1997) UVB-induced alterations in permeability barrier function: roles for epidermal hyperproliferation and thymocyte-mediated response. J Invest Dermatol 108:769–775

    Article  CAS  PubMed  Google Scholar 

  • Harrison GI, Young AR, McMahon SB (2004) Ultraviolet radiation-induced inflammation as a model for cutaneous hyperalgesia. J Invest Dermatol 122:183–189

    Article  CAS  PubMed  Google Scholar 

  • Henrich F, Magerl W, Klein T et al (2015) Capsaicin-sensitive C-and A-fibre nociceptors control long-term potentiation-like pain amplification in humans. Brain 138:2505–2520

    Article  PubMed  Google Scholar 

  • Hockley JRF, Taylor TS, Callejo G et al (2018) Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut 68:633–644

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann RT, Schmelz M (1999) Time course of UVA-and UVB-induced inflammation and hyperalgesia in human skin. Eur J Pain 3:131–139

    Article  CAS  PubMed  Google Scholar 

  • Hönigsmann H (2002) Erythema and pigmentation. Photodermatol Photoimmunol Photomed 18:75–81

    Article  PubMed  Google Scholar 

  • Jiang SJ, Chen JY, Lu ZF et al (2006) Biophysical and morphological changes in the stratum corneum lipids induced by UVB irradiation. J Dermatol Sci 44:29–36

    Article  CAS  PubMed  Google Scholar 

  • Kennedy WR, Vanhove GF, Lu S et al (2010) A randomized, controlled, open-label study of the long-term effects of NGX-4010, a high-concentration capsaicin patch, on epidermal nerve fiber density and sensory function in healthy volunteers. J Pain 11:579–587

    Article  CAS  PubMed  Google Scholar 

  • Kienzler JL, Magnette J, Queille-Roussel C et al (2005) Diclofenac-Na gel is effective in reducing the pain and inflammation associated with exposure to ultraviolet light–results of two clinical studies. Skin Pharmacol Physiol 18:144–152

    Article  CAS  PubMed  Google Scholar 

  • LaMotte RH, Campbell JN (1978) Comparison of responses of warm and nociceptive C-fiber afferents in monkey with human judgments of thermal pain. J Neurophysiol 41:509–528

    Article  CAS  PubMed  Google Scholar 

  • Landmann G, Lustenberger C, Schleinzer W et al (2016) Short lasting transient effects of a capsaicin 8% patch on nociceptor activation in humans. Eur J Pain 20:1443–1453

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Sohn YW, Yoo ES, Kim KH (1991) 1–1) Neurotoxicity and long lasting analgesia induced by capsaicinoids. J Toxicol Sci 16:3–20

    Article  CAS  PubMed  Google Scholar 

  • Li C-L, Li K-C, Wu D et al (2016) Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res 26:83

    Article  CAS  PubMed  Google Scholar 

  • Lo Vecchio S (2015) Inflammation and pain in skin and deep tissues. Aalborg Universitetsforlag. Ph.d.-serien for Det Sundhedsvidenskabelige Fakultet, Aalborg Universitet, Aalborg. https://doi.org/10.5278/vbn.phd.med.00015

    Book  Google Scholar 

  • Lo Vecchio S, Petersen LJ, Finocchietti S et al (2014) Hyperalgesia and allodynia to superficial and deep-tissue mechanical stimulation within and outside of the UVB irradiated area in human skin. Scand J Pain 5:258–267

    Article  Google Scholar 

  • Lo Vecchio S, Andersen HH, Arendt-Nielsen L (2018) The time course of brief and prolonged topical 8% capsaicin-induced desensitization in healthy volunteers evaluated by quantitative sensory testing and vasomotor imaging. Exp Brain Res 236:2231–2244. https://doi.org/10.1007/s00221-018-5299-y

    Article  CAS  PubMed  Google Scholar 

  • Lumpkin EA, Caterina MJ (2007) Mechanisms of sensory transduction in the skin. Nature 445:858

    Article  CAS  PubMed  Google Scholar 

  • Magerl W, Fuchs PN, Meyer RA, Treede R-D (2001) Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain 124:1754–1764

    Article  CAS  PubMed  Google Scholar 

  • Maihöfner C, Heskamp M (2014) Treatment of peripheral neuropathic pain by topical capsaicin: Impact of pre-existing pain in the QUEPP-study. Eur J Pain 18:671–679

    Article  PubMed  Google Scholar 

  • Mainka T, Malewicz NM, Baron R et al (2016) Presence of hyperalgesia predicts analgesic efficacy of topically applied capsaicin 8% in patients with peripheral neuropathic pain. Eur J Pain 20:116–129

    Article  CAS  PubMed  Google Scholar 

  • Malmberg AB, Mizisin AP, Calcutt NA et al (2004) Reduced heat sensitivity and epidermal nerve fiber immunostaining following single applications of a high-concentration capsaicin patch. Pain 111:360–367

    Article  CAS  PubMed  Google Scholar 

  • Meguro S, Arai Y, Masukawa Y et al (2000) Relationship between covalently bound ceramides and transepidermal water loss (TEWL). Arch Dermatol Res 292:463–468

    Article  CAS  PubMed  Google Scholar 

  • Meyer RA (2006) Peripheral mechanisms of cutaneous nociception. Wall Melzack’s textbook of pain. Elsevier, Amsterdam, pp 3–34

    Book  Google Scholar 

  • Mørch CD, Gazerani P, Nielsen TA, Arendt-Nielsen L (2013) The UVB cutaneous inflammatory pain model: a reproducibility study in healthy volunteers. Int J Physiol Pathophysiol Pharmacol 5:203

    PubMed  PubMed Central  Google Scholar 

  • Mou J, Paillard F, Turnbull B et al (2013) Efficacy of Qutenza®(capsaicin) 8% patch for neuropathic pain: a meta-analysis of the Qutenza clinical trials database. Pain 154:1632–1639

    Article  CAS  PubMed  Google Scholar 

  • Nolano M, Simone DA, Wendelschafer-Crabb G et al (1999) Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain 81:135–145. https://doi.org/10.1016/S0304-3959(99)00007-X

    Article  CAS  PubMed  Google Scholar 

  • O’Neill J, Brock C, Olesen AE et al (2012) Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 64:939–971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Neill J, Sikandar S, McMahon SB, Dickenson AH (2015) Human psychophysics and rodent spinal neurones exhibit peripheral and central mechanisms of inflammatory pain in the UVB and UVB heat rekindling models. J Physiol 593:4029–4042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olausson H, Wessberg J, McGlone F, Vallbo Å (2010) The neurophysiology of unmyelinated tactile afferents. Neurosci Biobehav Rev 34:185–191

    Article  PubMed  Google Scholar 

  • Ragé M, Van Acker N, Facer P et al (2010) The time course of CO2 laser-evoked responses and of skin nerve fibre markers after topical capsaicin in human volunteers. Clin Neurophysiol 121:1256–1266

    Article  PubMed  Google Scholar 

  • Rhodes LE, Belgi G, Parslew R et al (2001) Ultraviolet-B-induced erythema is mediated by nitric oxide and prostaglandin E2 in combination. J Invest Dermatol 117:880–885

    Article  CAS  PubMed  Google Scholar 

  • Ringkamp M, Peng YB, Wu G et al (2001) Capsaicin responses in heat-sensitive and heat-insensitive A-fiber nociceptors. J Neurosci 21:4460–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolke R, Baron R, Maier C et al (2006a) Quantitative sensory testing in the German research network on neuropathic pain (DFNS): standardized protocol and reference values. Pain 123:231–243

    Article  CAS  PubMed  Google Scholar 

  • Rolke R, Magerl W, Campbell KA et al (2006b) Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain 10:77–88

    Article  CAS  PubMed  Google Scholar 

  • Ross SE (2011) Pain and itch: insights into the neural circuits of aversive somatosensation in health and disease. Curr Opin Neurobiol 21:880–887

    Article  CAS  PubMed  Google Scholar 

  • Slugg RM, Meyer RA, Campbell JN (2000) Response of cutaneous A-and C-fiber nociceptors in the monkey to controlled-force stimuli. J Neurophysiol 83:2179–2191

    Article  CAS  PubMed  Google Scholar 

  • Smith GD, Gunthorpe MJ, Kelsell RE et al (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418(6894):186–190

    Article  CAS  PubMed  Google Scholar 

  • Snyder DS (1975) Cutaneous effects of topical indomethacin, an inhibitor of prostaglandin synthesis, on UV-damaged skin. J Invest Dermatol 64:322–325

    Article  CAS  PubMed  Google Scholar 

  • Sycha T, Gustorff B, Lehr S et al (2003) A simple pain model for the evaluation of analgesic effects of NSAIDs in healthy subjects. Br J Clin Pharmacol 56:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sycha T, Anzenhofer S, Lehr S et al (2005) Rofecoxib attenuates both primary and secondary inflammatory hyperalgesia: a randomized, double blinded, placebo controlled crossover trial in the UV-B pain model. Pain 113:316–322

    Article  CAS  PubMed  Google Scholar 

  • Szöllősi AG, Vasas N, Angyal Á et al (2018) Activation of TRPV3 regulates inflammatory actions of human epidermal keratinocytes. J Invest Dermatol 138:365–374

    Article  PubMed  CAS  Google Scholar 

  • Thiele JJ, Dreher F, Maibach HI, Packer L (2003) Impact of ultraviolet radiation and ozone on the transepidermal water loss as a function of skin temperature in hairless mice. Skin Pharmacol Physiol 16:283–290

    Article  CAS  Google Scholar 

  • Tiwari V, Tiwari V, He S et al (2016) Mas-related G protein-coupled receptors offer potential new targets for pain therapy. In: Ma C, Huang Y (eds) Translational research in pain and itch. Springer, Berlin, pp 87–103

    Chapter  Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB et al (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  CAS  PubMed  Google Scholar 

  • Treede R-D, Meyer RA, Campbell JN (1998) Myelinated mechanically insensitive afferents from monkey hairy skin: heat-response properties. J Neurophysiol 80:1082–1093

    Article  CAS  PubMed  Google Scholar 

  • Üçeyler N, Sommer C (2014) High-dose capsaicin for the treatment of neuropathic pain: what we know and what we need to know. Pain Ther 3:73–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Usoskin D, Furlan A, Islam S et al (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18(1):145–153

    Article  CAS  PubMed  Google Scholar 

  • van Neerven SGA, Mouraux A (2020) Capsaicin-induced skin desensitization differentially affects a-delta and c-fiber-mediated heat sensitivity. Front Pharmacol 11:615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, La J-H, Hamill OP (2019) Piezo1 is selectively expressed in small diameter mouse DRG neurons distinct from neurons strongly expressing TRPV1. Front Mol Neurosci 12:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinkauf B, Main M, Schmelz M, Rukwied R (2013) Modality-specific nociceptor sensitization following UV-B irradiation of human skin. J Pain 14:739–746

    Article  CAS  PubMed  Google Scholar 

  • Wilgus TA, Parrett ML, Ross MS et al (2002) Inhibition of ultraviolet light B-induced cutaneous inflammation by a specific cyclooxygenase-2 inhibitor. In: Honn KV, Marnett LJ, Nigam S, Dennis E, Serhan C (eds) Eicosanoids and other bioactive lipids in cancer, inflammation, and radiation injury. Springer, Berlin, pp 85–92

    Chapter  Google Scholar 

  • Xu H, Ramsey IS, Kotecha SA et al (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Brenner M, Hearing VJ (2007) The regulation of skin pigmentation. J Biol Chem 282:27557–27561

    Article  CAS  PubMed  Google Scholar 

  • Yarnitsky D, Sprecher E, Zaslansky R, Hemli JA (1995) Heat pain thresholds: normative data and repeatability. Pain 60:329–332

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Cavanaugh DJ, Nemenov MI, Basbaum AI (2013) The modality-specific contribution of peptidergic and non-peptidergic nociceptors is manifest at the level of dorsal horn nociresponsive neurons. J Physiol 591:1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Follansbee T, Wu X et al (2018) TRPV1 mediates inflammation and hyperplasia in imiquimod (IMQ)-induced psoriasiform dermatitis (PsD) in mice. J Dermatol Sci 92:264–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zylka MJ, Rice FL, Anderson DJ (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45:17–25

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Center for Neuroplasticity and Pain (CNAP) is supported by the Danish National Research Foundation (DNRF121).

Author information

Authors and Affiliations

Authors

Contributions

HHA and LAN conceived the research idea and designed the study. SLV collected and analyzed the data and wrote the initial manuscript draft.

Corresponding author

Correspondence to Silvia Lo Vecchio.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Statement of exclusivity

This manuscript is submitted only to Experimental Brain Research and has not previously been published.

Additional information

Communicated by Francesca Frassinetti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Vecchio, S., Andersen, H.H., Elberling, J. et al. Sensory defunctionalization induced by 8% topical capsaicin treatment in a model of ultraviolet-B-induced cutaneous hyperalgesia. Exp Brain Res 239, 2873–2886 (2021). https://doi.org/10.1007/s00221-021-06170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-021-06170-0

Keywords

Navigation