Skip to main content
Log in

Menu Optimization for Multi-Profile Customer Systems on Large Scale Data

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Everyday, a majority of the people, most probably several times, use the banking applications through online applications or physical ATM (Automated Teller Machine) devices for managing their financial transactions. However, most financial institutions provide static user interfaces regardless of the needs for different customers. Saving even a few seconds for each transaction through more personalized interface design might not only result in higher efficiency, but also result in customer satisfaction and increased market share among the competitors. In ATM Graphical User Interface (GUI) design, transaction completion time is, arguably, one of the most important metrics to quantify customer satisfaction. Optimizing GUI menu structures has been pursued and many heuristic techniques for this purpose are present. However, menu optimization by employing an exact mathematical optimization framework has never been performed in the literature. We cast the ATM menu optimization problem as a Mixed Integer Programming (MIP) framework. All the parameters of the MIP framework are derived from a comprehensive actual ATM menu usage database. We also proposed two heuristic approaches to reduce the computational complexity. Our solution can be accustomed with ergonomic factors and can easily be tailored for optimization of various menu design problems. Performance evaluations of our solutions by using actual ATM data reveal the superior performance of our optimization solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Saleh, K., & Bendak, S. (2013). An Ergonomics Evaluation of Certain ATM Dimensions. International Journal of Occupational Safety and Ergonomics (JOSE), 19(3), 347–353.

    Article  Google Scholar 

  • Amant, R. S., Horton, T. E., & Ritter, F. E. (2007). Model-based evaluation of expert cell phone menu interaction. ACM Transactions on Computer-Human Interaction (TOCHI), 14(1), 1:1-1:24.

    Article  Google Scholar 

  • Apari, T.G., Molu, F., Findik, N., & Dalci, M. (2013). User Experience approach in financial services. In: Proc. International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), pp 400–403

  • Bailly, G., Oulasvirta, A., Kotzing, T., & Hoppe, S. (2013). MenuOptimizer: Interactive Optimization of Menu Systems. In: Proc. annual ACM symposium on User interface software and technology (UIST), pp 331–341

  • Cave, K. R., & Wolfe, J. M. (1990). Modeling the role of parallel processing in visual search. Cognitive Psychology, 22, 225–271.

    Article  Google Scholar 

  • Chanco, C., Moquillaza, A., & Paz, F. (2019). Development and validation of usability heuristics for evaluation of interfaces in atms. In A. Marcus & W. Wang (Eds.), Design, User Experience, and Usability (pp. 3–18). Berline: Springer.

    Google Scholar 

  • Cooharojananone, N., Taohai, K., & Phimoltares, S. (2010). A new design of ATM interface for banking services in Thailand. In: Proc. Annual International Symposium on Applications and the Internet (SAINT), pp 312–315

  • Cremers, A. H. M., de Jong, J. G. M., & Van Balken, J. S. (2008). User-centered design with illiterate persons: The case of the ATM user interface. Lecture Notes in Computer Science, 5105, 713–720.

    Article  Google Scholar 

  • Curran, K., & King, D. (2008). Investigating the human computer interaction problems with automated teller machine navigation menus. Interactive Technology and Smart Education, 5(1), 59–79.

    Article  Google Scholar 

  • Danilenko, A. I., & Goubko, M. V. (2013). Semantic-aware optimization of user interface menus. Automation and Remote Control, 74(8), 1399–1411.

    Article  Google Scholar 

  • Dawe. M. (2007). Understanding mobile phone requirements for young adults with cognitive disabilities. In: Proc. International ACM SIGACCESS conference on Computers and accessibility, pp 179–186

  • Francis, G. (2000). Designing multifunction displays: An optimization approach. International Journal of Cognitive Ergonomics, 4(2), 107–124.

    Article  Google Scholar 

  • Fukazawa, Y., Hara, M., & Ueno, H. (2010). Automatic cell phone menu customization based on user operation history. Information and Media Technologies, 5(1), 206–215.

    Google Scholar 

  • Ghiani, G., Manca, M., Paternò, F., Rett, J., & Vaibhav, A. (2015). Adaptive multimodal web user interfaces for smart work environments. Journal of Ambient Intelligence and Smart Environments, 7(6), 701–717.

    Article  Google Scholar 

  • Goubko, M.V., & Danilenko, A.I. (2010). An Automated Routine for Menu Structure Optimization. In: Proc. ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS), pp 67–76

  • Hollink, V., van Someren, M., & Wielinga, B. J. (2007). Navigation behavior models for link structure optimization. User Modeling and User-Adapted Interaction, 17(4), 339–377.

    Article  Google Scholar 

  • Huang, H., Yang, M., Yang, C., & Lv, T. (2019). User performance effects with graphical icons and training for elderly novice users: A case study on automatic teller machines. Applied Ergonomics, 78, 62–69.

    Article  Google Scholar 

  • Jain, A. (2012). Optimizing feature-access time through dynamic updates to application menu layout. ACM SIGSOFT Software Engineering Notes, 37(5), 1–14.

    Google Scholar 

  • Karimov, J., & Ozbayoglu, M. (2015). High quality clustering of big data and solving empty-clustering problem with an evolutionary hybrid algorithm. In: Proc. IEEE International Conference on Big Data

  • Karimov, J., Ozbayoglu, M., & Dogdu, E. (2015a). k-means performance improvements with centroid calculation heuristics both for serial and parallel environments. In: Proc. IEEE International Congress on Big Data, pp 444–451

  • Karimov, J., Ozbayoglu, M., Tavli, B., & Dogdu, E. (2015b). Generic menu optimization for multi-profile customer systems. In: Proc. IEEE International Symposium on Systems Engineering (ISSE), pp 163–169

  • Knuth, D. E. (1985). Dynamic huffman coding. Journal of algorithms, 6(2), 163–180.

    Article  Google Scholar 

  • Kobayashi, H. (1986). Automatic Teller Machine. US Patent No. D283,746

  • Krishnan, G., Kumar, S., Jithin, C.R., Panicker, V.V., & Sridharan, R. (2011). Service innovation for the user interface of an ATM catering to the needs of the student community. In: Proc. IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp 1180–1184

  • Lee, E., & MacGregor, J. (1985). Minimizing user search time in menu retrieval systems. Human Factors: The Journal of the Human Factors and Ergonomics Society, 27(2), 157–162.

    Article  Google Scholar 

  • Liu, B., Francis, G., & Salvendy, G. (2002). Applying models of visual search to menu design. International Journal of Human Computer Studies, 56(3), 307–330.

    Article  Google Scholar 

  • Matsui, S., & Yamada, S. (2008). A genetic algorithm for optimizing hierarchical menus. In: Proc. IEEE Congress on Evolutionary Computation, pp 2851–2858

  • Mayer, C., Zimmermann, G., Grguric, A., Alexandersson, J., Sili, M., & Strobbe, C. (2016). A comparative study of systems for the design of flexible user interfaces. Journal of Ambient Intelligence and Smart Environments, 8(2), 125–148.

    Article  Google Scholar 

  • McCall, J.A., Richards, P.K., & Walters, G.F. (1977). Factors in Software Quality. Tech. Rep. RADC-TR-77-369, Rome Air Development Center, Air Force System Command, Griffiss Air Force Base, NY

  • Medhi, I., Patnaik, S., Brunskill, E., Gautama, S. N. N., Thies, W., & Toyama, K. (2011). Designing mobile interfaces for novice and low-literacy users. ACM Transactions on Computer-Human Interaction, 18(1), 1–28.

    Article  Google Scholar 

  • Miller, D.P. (1981). The depth/breadth tradeoff in hierarchical computer menus. In: Proc. Human Factors and Ergonomics Society Annual Meeting, 25, pp 296–300

  • Nielsen, J. (1994). Usability engineering. London: Elsevier.

    Google Scholar 

  • Norman, K.L. (1991). The Psychology of Menu Selection: Designing Cognitive Control at the Human/Computer Interface. Ablex Publishing Corporation

  • Norman, K. L. (2008). Better design of menu selection systems through cognitive psychology and human factors. Human Factors: The Journal of the Human Factors and Ergonomics Society, 50(3), 556–559.

    Article  Google Scholar 

  • Norman, K. L., & Chin, J. P. (1988). The effect of tree structure on search in a hierarchical menu selection system. Behaviour Information Technology, 7(1), 51–65.

    Article  Google Scholar 

  • Sears, A., & Shneiderman, B. (1994). Split menus: effectively using selection frequency to organize menus. ACM Transactions on Computer-Human Interaction (TOCHI), 1(1), 27–51.

    Article  Google Scholar 

  • Smyth, B., & Cotter, P. (2003). Intelligent navigation for mobile internet portals. In: Proc. International Joint Conference on Artificial Intelligence Workshop on Artificial Intelligence, Information Access, and Mobile Computing, pp 1–8

  • Taohai, K., Phimoltares, S., & Cooharojananone, N. (2010). Usability comparisons of seven main functions for automated teller machine (ATM) banking service of five banks in thailand. In: Proc. International Conference on Computational Science and Its Applications (ICCSA), pp 176–182

  • Thatcher, A., Shaik, F., & Zimmerman, C. (2005). Attitudes of semi-literate and literate bank account holders to the use of automatic teller machines (ATMs). International Journal of Industrial Ergonomics, 35(2), 115–130.

    Article  Google Scholar 

  • Thimbleby, H. (2000). Analysis and simulation of user interfaces. In: McDonald, S., Waern, Y., Cockton, G. (eds) People and Computers XIV – Usability or Else!, pp 221–237

  • Troiano, L., & Birtolo, C. (2014). Genetic algorithms supporting generative design of user interfaces: Examples. Information Sciences, 259, 433–451.

    Article  Google Scholar 

  • Troiano, L., Birtolo, C., & Armenise, R. (2016). Searching optimal menu layouts by linear genetic programming. Journal of Ambient Intelligence and Humanized Computing, 7(2), 239–256.

    Article  Google Scholar 

  • Witten, I. H., Cleary, J. G., & Greenberg, S. (1984). On frequency-based menu-splitting algorithms. International Journal of Man-Machine Studies, 21(2), 135–148.

    Article  Google Scholar 

  • Wolsey, L. A. (1998). Integer Programming. NewYork: Wiley.

    Google Scholar 

  • Wolsey, L. A. (2008). Mixed integer programming. In B. Wah (Ed.), Encyclopedia of Computer Science and Engineering. NewYork: Wiley.

    Google Scholar 

  • Zhang, M., Wang, F., Deng, H., & Yin, J. (2012). A survey on human-computer interaction technology for financial terminals. In: Proc. International Conference on Intelligent Networks and Intelligent Systems (ICINIS), pp 174–177

Download references

Acknowledgements

We would like to thank our project partner Provus Inc. (now part of MasterCard) for providing requirements, insight, and data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdogan Dogdu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimov, J., Ozbayoglu, M., Tavli, B. et al. Menu Optimization for Multi-Profile Customer Systems on Large Scale Data. Comput Econ 60, 221–242 (2022). https://doi.org/10.1007/s10614-021-10147-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-021-10147-0

Keywords

Navigation