Skip to main content
Log in

Age, Isotopic Features, and Formation Type of Rocks and Ores of the Allarechka Cu–Ni Sulfide Deposit, Fennoscandian Shield

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The Neoarchean U-Th-Pb (SHRIMP-II) age of 2718 ± 7 Ma was established for the large copper–nickel Allarechka deposit located in the Kola–Norwegian region of the Fennoscandian shield. The deposit is associated with metamorphosed and deeply eroded volcano-plutonic complexes, which are the age and formational analogues of the Neoarchean greenstone belts. The compositional similarity of hyperbasites of the Allarechka ore district and host metavolcanic rocks of the Annama Formation with komatiite–tholeiitic metavolcanic rocks of the similar age of the Ura Guba–Kolmozero–Voron’ya greenstone belt suggests that they are ascribed to the komatiite–tholeiite volcanoplutonic series, the parental high-Fe komatiite melts of which were derived by partial melting of depleted upper mantle εNd(t) = +7.0 ± 0.4) at high PT parameters. The petrographic and geochemical composition of ore peridotites indicates that they are a cumulate formed by fractionation of Ol + Opx ± Pl, Mag from the primary high-Fe komatiite melt in a shallow (P ~ 4 kbar) magma chamber at a liquidus temperature of at least 1200°С. The absence of a significant crustal contamination of the hyperbasites by Mesoarchean TTG-complexes is proved by the trace and rare-earth element geochemistry, the Nd isotopic composition, as well as by the homogeneous morphology and isotopic composition of the accessory magmatic zircon. In contrast, Re-Os and sulfur isotopic systematics of sulfide ores indicate the contribution of not only mantle but likely crustal component in the evolution of sulfide melt. After separation from a primary mantle melt under subcrustal conditions, the silicate and sulfide melts evolved independently. Obtained data suggest that a local Ni, Cu, and PGE-rich mantle anomaly was formed through a plume–lithosphere interaction beneath the Kola–Norwegian Terrane (in its present-day outlines) of the Fennoscandian Shield at 2.75–1.9 Ga. This anomaly was a source of ore matter for three Early Precambrian copper–nickel ore epochs, in particular, for Neoarchean (~ 2750 Ma) deposits of the Allarechka ore field, Paleoproterozoic deposits (~ 2500 Ma) of the layered intrusions (e.g., Monchegorsk and Fedorova-Pana), and Pechenga group (~ 1900 Ma).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Belousova, E.A., Griffin, W.L., and O’Reilly, S.Y., Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids, J. Petrol., 2006, vol. 47, no. 2, pp. 329–353.

    Article  Google Scholar 

  2. Black, L.P., Kamo, S.L., Allen, C.M., et al., Temora 1: a new zircon standard for U-Pb geochronology, Chem. Geol., 2003, vol. 200, pp. 155–170.

    Article  Google Scholar 

  3. Bolotov, V.I., Balabonin, N.L., and Ivanov, A.A., Distribution and conditions of formation of manganese ore ccurrences in the Archean metamorphic sequences of the Allarechka area, Prir. Khoz-vo Severa, 1981, vol. 9, pp. 24-27.

    Google Scholar 

  4. Brey, G.P. and Köhler, T., Geothermobarometry in four-phase lherzolite. II. New thermobarometers, and practical assessment of existing thermobarometers, J. Petrol., 1990, vol. 31, pp. 1353–1378.

    Article  Google Scholar 

  5. Cas, R.A.F., Marks, K., Perazzo, S., et al., Were intercalated komatiites and dacites at the Black Swan nickel sulphide mine, Yilgarn craton, western Australia, emplaced as extrusive lavas or intrusive bodies? The significance of breccia textures and contact relationships, Precambrian Res., 2013, vol. 229, pp. 133–149.

    Article  Google Scholar 

  6. Chashchin, V.V., Bayanova, T.B., Savchenko, E.E., et al., Petrogenesis and age of rocks from the lower zone of the Monchetundra mafic platinum-bearing massif, Kola Peninsula, Petrology, 2020, vol. 28, no. 2, pp. 151–182.

    Article  Google Scholar 

  7. Chernyshov, N.M., Pereslavtseva, A.A., Molotkov, S.P., and Chernyshova, M.N., New type of the nickel formation in the Precambrian of the Voronezh crystalline massif, Izv. Akad. Nauk SSSR, Ser. Geol., 1991, no. 1, pp. 111–124.

  8. Fedotova, A.A., Bibikova, E.V., and Simakin, S.G., Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies, Geochem. Int., 2008, vol. 46, no. 9, pp. 912–927.

    Article  Google Scholar 

  9. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  Google Scholar 

  10. Gole, M.J., Barnesand, S.J., and Hil, R.E.T., The geology of the Agnew nickel deposit, Western Australia, Geology, 1989, vol. 82, no. 929, pp. 46–56.

    Google Scholar 

  11. Gorbunov, G.I., Vinogradov, A.L., Dokuchaeva, V.S., et al., Main features of the evolution of nickel-bearing mafic-ultramafic magmatism at the Kola Peninsula, Problemy petrologii v svyazi s sul’fidnym medno-nikelevym rudoobrazovaniya (Petrological Problem in Relation with Sulfide Copper–Nickel Ore Formation), Moscow: Nauka, 1981, pp. 67–73.

    Google Scholar 

  12. Gorelov, V.F. and Turchenko, S.I., Kola terrane, Precambrian Ore Deposits of the East European and Siberian Cratons, Rundqvist D.V. and Gillen C., Elsevier, 1997, pp. 15–50.

    Google Scholar 

  13. Green, D.H., Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle, Phys. Chem. Mineral., 2015, vol. 42, pp. 95–122.

    Article  Google Scholar 

  14. Groves, D.I. and Hudson, D.R., The nature and origin of Archean stratabound volcanic assotiated nickel–iron–copper sulfide deposits, Handbook of Stratabound and Stratiform Ore Deposits, Amsterdan: Elsevier, 1981, vol. 9, pp. 305–401.

    Google Scholar 

  15. Hanski, E.J., Huhma, H., and Melezhik, V.A., New isotopic and geochemical data from the Palaeoproterozoic Pechenga greenstone belt, NW Russia: implication for basin development and duration of the volcanism, Precambrian Res., 2014, vol. 245, pp. 51–65.

    Article  Google Scholar 

  16. Hoskin, P.W.O. and Schaltegger, U., Zircon, Rev. Mineral. Geochem., 2003, vol. 53, pp. 27–62.

    Article  Google Scholar 

  17. Igrevskaya, L.V., Tendentsii razvitiya nikelevoi promyshlennosti: mir i Rossiya (Tendencies in the Evolution of Nickel Industry: World and Russia), Moscow: Nauchnyi mir, 2009. 268 p.

  18. Ivashchenko, V.I. and Golubev, A.I., Zoloto i platina Karelii: formatsionno-geneticheskie tipy orudeneniya i perspektivy (Gold and Platinum of Karelia: Formation-Genetic Types of Mineralization and Prospects), Petrozavodsk: KarNTs RAN, 2011.

  19. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Article  Google Scholar 

  20. Konnunaho, J.P., Hanski, E.J., Bekker, A., et al., The Archean komatiite-hosted, PGE-bearing Ni–Cu sulfide deposit at Vaara, eastern Finland: evidence for assimilation of external sulfur and post-depositional desulfurization, Mineral. Deposita, 2013, vol. 48, pp. 967–989.

    Article  Google Scholar 

  21. Konnunaho, J.P., Komatiite-hosted Ni–Cu–PGE Deposits in Finland: their Characterization, PGE Contents and Petrogenesis, Academic Dissertation, Geol. Surv. Finland, 2016.

  22. Kozlov, E.K., Estestvennye ryady porod nikelenosnykh intruzii i ikh metallogeniya (Natural Rock Series of the Nickel-Bearing Intrusions and their Metallogeny), Leningrad: Nauka, 1973.

  23. Krivolutskaya, N.A., Mantle origin of heavy isotopes of sulfur in ores of the Noril’sk deposits, Dokl. Earth Sci., 2014, vol. 454, no. 1, pp. 76–78.

    Article  Google Scholar 

  24. Likhachev, A.P., Platino-medno-nikelevye i platinovye mestorozhdeniya (Platinum–Copper–Nickel and Platinum Deposits), Moscow: Eslan, 2006. 496 s.

  25. Ludwig, K.R., Squid 1.00, a user’s manual, Berkeley Geochronol. Center Spec. Publ., 2000, no. 2, p. 2455.

  26. Makkonen, H.V., Halkoaho, T., Konnunaho, J., et al., Ni–(Cu–PGE) deposits in Finland—geology and exploration potential, Ore Geol. Rev., 2017, vol. 90, pp. 667–696.

    Article  Google Scholar 

  27. McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  28. Medno-nikelevye mestorozhdeniya Baltiiskogo shchita (Copper–Nickel Deposits of the Baltic Shield), Leningrad: Nauka, 1985.

  29. Medno-nikelevye mestorozhdeniya Pechengi (Copper–Nickel Deposits of Pechenga), Moscow: GEOS, 1999.

  30. Mercier, J.C.C., Single-pyroxene thermobarometry, Tectonophysics, 1980, vol. 70, nos 1–2, pp. 1–37.

    Article  Google Scholar 

  31. Moilanen, M., Hanski, E., Konnunaho, J., et al., Re-Os isotope geochemistry of komatiite-hosted Ni–Cu–PGE deposits in Finland, Ore Geol. Rev., 2019, vol. 105, pp. 102–122.

    Article  Google Scholar 

  32. Naldrett, A. J., Magmaticheskie sul’fidnye mestorozhdeniya medno-nikelkvykh i platinometal’nykh rud (Magmatic Sulfide Deposits of Copper–Nickel and PGM Ores), St. Petersburg: St. Petersb. Goc. Univ., 2003.

  33. Naldrett, A.J., Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration, Berlin: Springer, 2004.

    Book  Google Scholar 

  34. Peltonen, P. and Brugmann, G., Origin of layered continental mantle (Karelian Craton, Finland): geochemical and Re-Os isotope constraints, Lithos, 2006, vol. 89, pp. 405–423.

    Article  Google Scholar 

  35. Petrov, O.V., Gurskaya, L.I., and Feoktistov, V.P., Nickel metallogeny and prospects of evolution of its raw base in Russia, Regional. Geol. Metallogen., 2013, no. 54, pp. 64–74.

  36. Pushkarev, Yu.D., Kravchenko, M.P., Kravchenko, E.V., et al., Lead and sulfur isotope geochemistry in relation with genetic problem of the sulfide copper–nickel mineralization, Novye dannye po mestorozhdeniyam nikelya Kol’skogo poluostrova (New Data on Nickel Deposits of the Kola Peninsula), Apatity: KolNTs RAN, 1984, pp. 72-88.

  37. Ripley, E.M. and Li, C., Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits, Econ. Geol., 2003, vol. 398, pp. 635–641.

    Article  Google Scholar 

  38. Rye, R.O., A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems, Chem. Geol., 2005, no. 215, pp. 5–36.

  39. Skuf’in, P.K. and Bayanova, T.B., Early Proterozoic central-type volcano in the Pechenga structure and its relation to the ore-bearing gabbro–wehrlite complex of the Kola Peninsula, Petrology, 2006, vol. 14, no. 6, pp. 609–627.

    Article  Google Scholar 

  40. Smolkin, V.F., Lokhov, K.I., Skublov, S.G., et al., Paleoproterozoic Keulik–Kenirim ore-bearing gabbro–peridotite complex, Kola Region: a new occurrence of ferropicritic magmatism, Geol. Ore Deposits, 2018, vol. 60, no. 2, pp. 142–171.

    Article  Google Scholar 

  41. Sobolev, A.V., Asafov, E.V., Gurenko, A.A., et al., Komatiites reveal a hydrous Archaean deep-mantle reservoir, Nature, 2016, vol. 531, pp. 628–632.

    Article  Google Scholar 

  42. Sokolova, V.N. and Rundqvist, D.V., Geologiya sul’fidnykh medno-nikelevykh mestorozhdenii Kanadskogo shchita (Geology of Sulfide Copper–Nickel Deposits of the Canadian Shield), Moscow: VIEMS, 1985.

  43. Turchenko, S.I., Metallogeniya metamorfogennykh sul’fidnykh mestorozhdenii Baltiiskogo shchita (Metallogeny of Metamorphogenic Sulfide Deposits of the Baltic Shield), Leningrad: Nauka, 1978.

  44. Turchenko, S.I., Sulfide–nickel ore formation in metamorphic belts, Problemy petrologii v svyazi s sul’fidnym medno-nikelevym rudoobrazovaniem (Problems of Petrology and Relation with Sulfide Copper–Nickel Ore Formation), Moscow: Nauka, 1981, pp. 119–129.

    Google Scholar 

  45. Vinogradov, D.A., Grinchenko, B.M, and Goncharov, Yu.V., Structure and nickel potential of the Allarechka area, Sov. Geologiya, 1991, no. 11, pp. 30–37.

  46. Voitekhovskii, Yu.L., Vinogradov, L.A., Goncharov, Yu.V., et al., Nickel prospects of the Allarechka area, Problemy rudogeneza dokembriiskikh regionov (Problems of Ore Genesis of Precambrian Regions), Apatity: 2008, pp. 79–84.

  47. Vrevskii, A.B., Petrological problems of sulfide nickel mineralization in the Early Precambrian of northeastern Baltic Shield, Geol. Rudn. Mestorozhd., 1991, vol. 3, no. 1, pp. 23–32.

    Google Scholar 

  48. Vrevskii, A.B., Kol’sko-Norvezhskaya provintsiya. Arkhei. Rannii dokembrii Baltiiskogo shchita (Kola–Norvegian Province. Archean. Early Precambrian of the Baltic Shield), St. Petersburg: Nauka, 2005, pp. 10–59.

  49. Vrevskii, A.B., Specifics of Neoarchean plume–lithospheric processes in the Kola–Norwegian Province of the Fennoscandian Shield: I. Composition and age of the komatiite–tholeiite association, Petrology, 2018, vol. 26, no. 2, pp. 121–144.https://doi.org/10.1134/S0869591118020066

    Article  Google Scholar 

  50. Vrevsky, A.B., Matrenichev, V.A., and Ruzheva, M.S., Petrology of komatiites from the Baltic Shield and isotope geochemical evolution of their mantle sources, Petrology, 2003, vol. 11, no. 6, pp. 532–561.

    Google Scholar 

  51. Vukmanovic, Z., Reddy, S.M., Godel, B., et al., Relationship between microstructures and grain-scale trace element distribution in komatiite-hosted magmatic sulphide ores, Lithos, 2014, vol. 184–187, pp. 42–61.

    Article  Google Scholar 

  52. Williams, I.S., U-Th-Pb geochronology by ion microprobe, Applications of Microanalytical Techniques to Understanding Mineralizing Processes, McKibben, M.A., Shanks, W.C. and Ridley, W.I., Eds., Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.

    Google Scholar 

  53. Yakovlev, Yu.N., A comparative mineralogical characteristics of syngenetic and epigenetic types of copper–nickel mineralization in the Allarechka area, Geologiya i mineralogiya sul’fidnykh medno-nikelevykh mestorozhdenii Kol’skogo poluostrova (Geology and Mineralogy of Sulfide Copper–Nickel Deposits of the Kola Peninsula), Leningrad: Nauka, 1969, pp. 63–77.

    Google Scholar 

  54. Yakovlev, Yu.N. and Yakovleva, A.K., Mineralogiya i geokhimiya metamorfizovannykh medno-nikelevakh rud (na primere Allarechenskogo raiona) (Mineralogy and Geochemistry of Metamorphosed Copper–Nickel Ores: Evidence from the Allarechka Area), Leningrad: Nauka, 1973.

  55. Zak, S.I., Giperbazitovaya formatsiya Kol’skogo poluostrova (Hyperbasite Formation of the Kola Peninsula), Leningrad: Nauka, 1980.

  56. Zak, S.I., Kochnev-Pervukhov, V.I., and Proskuryakov, V.V., Ul’traosnovnye porody Allarechenskogo raiona, ikh metamorfizm i orudenenie (Ultrabasic Rocks of the Allarechka Area, their Metamorphism, and Mineralization), Petrozavodsk: Izd-vo Kareliya, 1972.

  57. Zaskind, E.S. and Konkina, O.M., Typification of sulfide copper–nickel and PGM deposits for aims of forecasting and prospecting, Otechestvennaya Geol., 2019, no. 2, pp. 3–15.https://doi.org/10.24411/0869-7175-2019-10010

Download references

ACKNOWLEDGMENT

We are grateful to P.A. L’vov and O.L. Galankina for the performance of analytical studies and to reviewers A.B. Kotov and A.A. Arzamastsev for their useful comments.

Funding

The work was made in the Framework of State Task of the Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences (no. 0153-2019-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Vrevskii.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrevskii, A.B., Turchenko, S.I. Age, Isotopic Features, and Formation Type of Rocks and Ores of the Allarechka Cu–Ni Sulfide Deposit, Fennoscandian Shield. Petrology 29, 351–370 (2021). https://doi.org/10.1134/S0869591121040081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591121040081

Keywords:

Navigation