Skip to main content
Log in

A comparison of the UV and HI properties of the extended UV (XUV) disk galaxies NGC 2541, NGC 5832 and ESO406-042

  • Science Results
  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

We present a UV study of 3 extended UV (XUV) galaxies that we have observed with the UVIT and the GMRT. XUV galaxies show filamentary or diffuse star formation well beyond their optical disks, in regions where the disk surface density lies below the threshold for star formation. GALEX observations found that surprisingly 30% of all the nearby spiral galaxies have XUV disks. The XUV galaxies can be broadly classified as Type 1 and Type 2 XUV disks. The Type 1 XUV disks have star formation that is linked to that in their main disk, and the UV emission appears as extended, filamentary spiral arms. The UV luminosity is associated with compact star forming regions along the extended spiral arms. The star formation is probably driven by slow gas accretion from nearby galaxies or the intergalactic medium (IGM). But the Type 2 XUV disks have star formation associated with an outer low luminosity stellar disk that is often truncated near the optical radius of the galaxy. The nature of the stellar disks in Type 2 XUV disks are similar to that of the diffuse stellar disks of low surface brightness galaxies. The star formation in Type 2 XUV disks is thought to be due to rapid gas accretion or gas infall from nearby high velocity clouds (HVCs), interacting galaxies or the IGM. In this paper, we investigate the star formation properties of the XUV regions of two Type 2 galaxies and one mixed XUV type galaxy and compare them with the neutral hydrogen (HI) emisison in their disks. We present preliminary results of our UVIT (FUV and NUV) observations of NGC 2541, NGC 5832 and ESO406-042, as well as GMRT observations of their HI emission. We describe the UV emission morphology, estimate the star formation rates and compare it with the HI distribution in these Type 2 and mixed XUV galaxies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bianchi L. 2011, Astrophys. Space Sci., 335, 51

    Article  ADS  Google Scholar 

  • Bianchi L., Conti A., Shiao B. 2014, Adv. Space Res., 53, 900

    Article  ADS  Google Scholar 

  • Bicalho I. C., Combes F., Rubio, M., Verdugo C., Salome P. 2019, A&A, 623, A66

    Article  ADS  Google Scholar 

  • Bigiel F., Leroy A., Seibert M. et al. 2010, ApJL, 720, L31

  • Bruzzese S. M., Thilker D. A., Meurer G. R. et al. 2020, MNRAS, 491, 2366

  • Calzetti D. 2013, in Falcón-Barroso J., Knapen J.-H., eds, Star Formation Rate Indicators, 419

  • Cook D. O., Dale D. A., Johnson B. D. et al. 2014, MNRAS, 445, 881

  • Das M. 2013, J. Astrophys. Astr., 34, 19

    Article  ADS  Google Scholar 

  • Das M., McGaugh S. S., Ianjamasimanana R., Schombert J., Dwarakanath K. S. 2020, ApJ, 889, 10

    Article  ADS  Google Scholar 

  • Das M., Sengupta C., Honey M. 2019, ApJ, 871, 197

    Article  ADS  Google Scholar 

  • de Blok W. J. G., Keating K. M., Pisano D. J. et al. 2014, A&A, 569, A68

  • Dessauges-Zavadsky M., Verdugo C., Combes F., Pfenniger D. 2014, A&A, 566, A147

    Article  ADS  Google Scholar 

  • Ferguson A. M. N., Wyse R. F. G., Gallagher J. S., Hunter D. A. 1998, ApJL, 506, L19

    Article  ADS  Google Scholar 

  • Gil de Paz A., Boissier S., Madore B. F. et al. 2007, ApJS, 173, 185

  • Honey M., Das M., Ninan J. P., Manoj P. 2016, MNRAS, 462, 2099

    Article  ADS  Google Scholar 

  • Kaczmarek J. F., Wilcots E. M. 2012, AJ, 144, 67

    Article  ADS  Google Scholar 

  • Kataria S. K., Das M. 2018, MNRAS, 475, 1653

    Article  ADS  Google Scholar 

  • Kennicutt Robert C. Jr. 1989, ApJ, 344, 685

  • Krumholz M. R., McKee C. F. 2008, Nature, 451, 1082

    Article  ADS  Google Scholar 

  • Kumar A., Ghosh S. K., Hutchings J. et al. 2012, in Takahashi T., Murray S. S., den Herder J.-W. A. eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, 84431N

  • Lemonias J. J., Schiminovich D., Thilker D. et al. 2011, ApJ, 733, 74

  • Martin D. C., Fanson J., Schiminovich D. et al. 2005, ApJL, 619, L1

  • McGaugh S. S., Schombert J. M., Bothun G. D. 1995, AJ, 109, 2019

    Article  ADS  Google Scholar 

  • Montez Rodolfo J., Ramstedt S., Kastner J. H., Vlemmings W., Sanchez E. 2017, ApJ, 841, 33

    Article  ADS  Google Scholar 

  • Morrissey P., Conrow T., Barlow T. A. et al. 2007, ApJS, 173, 682

  • Patra N. N., Chengalur J. N., Karachentsev I. D., Kaisin S. S., Begum A. 2016, MNRAS, 456, 2467

    Article  ADS  Google Scholar 

  • Patra N. N., Kanekar N., Chengalur J. N. et al. 2019, MNRAS, 483, 3007

  • Postma J. E., Leahy D. 2017, PASP, 129, 115002

    Article  ADS  Google Scholar 

  • Rahna P. T., Das M., Murthy J., Gudennavar S. B., Bubbly S. G. 2018, MNRAS, 481, 1212

    ADS  Google Scholar 

  • Rahna P. T., Murthy J., Safonova M. et al. 2017, MNRAS, 471, 3028

  • Sahu S., Subramaniam A., Simunovic M. et al. 2019, ApJ, 876, 34

  • Salim S., Rich R. M., Charlot S. et al. 2007, ApJS, 173, 267

  • Tandon S. N., Subramaniam A., Girish V. et al. 2017, AJ, 154, 128

  • Tandon S. N., Postma J., Joseph P. et al. 2020, AJ, 159, 158

  • Thilker D. A., Bianchi L., Boissier S. et al. 2005, ApJL, 619, L79

  • Thilker D. A., Bianchi L., Meurer G. et al. 2007, ApJS, 173, 538

  • van der Hulst J. M., van Albada T. S., Sancisi R. 2001, in Hibbard J. E., Rupen M., van Gorkom J. H., eds, Astronomical Society of the Pacific Conference Series, Vol. 240, Gas and Galaxy Evolution, 451

  • van der Kruit P. C., Searle L. 1981, A&A, 95, 105

    ADS  Google Scholar 

  • Yi S. K., Lee J., Sheen Y.-K. et al. 2011, ApJS, 195, 22

Download references

Acknowledgements

The authors gratefully acknowledge the IUSSTF grant JC-014/2017, which enabled the authors MD, NNP, and KSD to visit CWRU and develop the science presented in this paper. This publication uses the data from the UVIT which is part of the AstroSat mission of the Indian Space Research Organisation (ISRO), archived at the Indian Space Science Data Centre (ISSDC). This publication uses UVIT data processed by the payload operations centre at IIA. The UVIT is built in collaboration between IIA, IUCAA, TIFR, ISRO and CSA. The HI observations were done using the GMRT. We thank the staff of the GMRT that made these observations possible. The GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. This research has used Spitzer 3.6 micron images. This research has also made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The facilities used are Astrosat (UVIT), GALEX, GMRT, WSRT, Spitzer, SDSS, GBT, Parkes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Das.

Additional information

This article is part of the Special Issue on “AstroSat: Five Years in Orbit”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, M., Yadav, J., Patra, N. et al. A comparison of the UV and HI properties of the extended UV (XUV) disk galaxies NGC 2541, NGC 5832 and ESO406-042. J Astrophys Astron 42, 85 (2021). https://doi.org/10.1007/s12036-021-09749-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-021-09749-9

Keywords

Navigation