Skip to main content
Log in

Synergic effect of graphene nanoplatelets and carbon nanotubes on the electrical resistivity and percolation threshold of polymer hybrid nanocomposites

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A physics-based hierarchical modeling approach considering tunneling resistance through polymer is proposed to predict the percolation threshold and resistivity of carbon nanotube (CNT)/graphene nanoplatelet (GNP)-reinforced polymer hybrid nanocomposites. At first, a method is developed to calculate the resistivity of CNT-polymer nanocomposites. Then, percolation theory model is employed to calculate the percolation threshold of CNT-reinforced nanocomposites. At the end, an analytical model is presented for estimating the resistivity of CNT/GNP hybrid nanocomposites. The effects of barrier height, nanofiller aspect ratio and tunneling distance on the percolation threshold and resistivity of hybrid nanocomposites are extensively investigated. The results show that the percolation threshold depends on many factors such as aspect ratio, electrical conductivity and volume fraction of nanofillers. It is clearly shown that the smaller GNP aspect ratio leads to an increase in percolation threshold and electrical resistivity. The results also indicate the dominant role of nanofiller volume fraction at low tunneling distance. The model results are compared with experimental data in the literature for GNP/CNT hybrid nanocomposites where it is demonstrated that the represented model is able to explain the impact of electrical tunneling on the resistivity of polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Trukhanov, K. Astapovich, V. Turchenko, M. Almessiere, Y. Slimani, A. Baykal, A. Sombra, D. Zhou, R. Jotania, C. Singh, Influence of the dysprosium ions on structure, magnetic characteristics and origin of the reflection losses in the Ni–Co spinels. J. Alloys Compounds 841, 155667 (2020)

    Article  Google Scholar 

  2. M. Owais, J. Zhao, A. Imani, G. Wang, H. Zhang, Z. Zhang, Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Compos. A Appl. Sci. Manuf. 117, 11–22 (2019)

    Article  Google Scholar 

  3. F. He, S. Lau, H.L. Chan, J. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21(6), 710–715 (2009)

    Article  Google Scholar 

  4. M. Qu, F. Nilsson, Y. Qin, G. Yang, Y. Pan, X. Liu, G.H. Rodriguez, J. Chen, C. Zhang, D.W. Schubert, Electrical conductivity and mechanical properties of melt-spun ternary composites comprising PMMA, carbon fibers and carbon black. Compos. Sci. Technol. 150, 24–31 (2017)

    Article  Google Scholar 

  5. T. Zubar, V. Fedosyuk, D. Tishkevich, O. Kanafyev, K. Astapovich, A. Kozlovskiy, M. Zdorovets, D. Vinnik, S. Gudkova, E. Kaniukov, The effect of heat treatment on the microstructure and mechanical properties of 2D nanostructured Au/NiFe system. Nanomaterials 10(6), 1077 (2020)

    Article  Google Scholar 

  6. O. Yakovenko, L.Y. Matzui, L. Vovchenko, V. Oliynyk, A. Trukhanov, S. Trukhanov, M. Borovoy, P. Tesel’ko, V. Launets, O. Syvolozhskyi, Effect of magnetic fillers and their orientation on the electrodynamic properties of BaFe12–x Gax O19 (x= 01–12)—epoxy composites with carbon nanotubes within GHz range. Appl. Nanosci. 10(12), 4747–4752 (2020)

    Article  Google Scholar 

  7. T. Zubar, A. Trukhanov, D. Vinnik, K. Astapovich, D. Tishkevich, E. Kaniukov, A. Kozlovskiy, M. Zdorovets, S. Trukhanov, Features of the growth processes and magnetic domain structure of nife nano-objects. J. Phys. Chem. C 123(44), 26957–26964 (2019)

    Article  Google Scholar 

  8. Q. Zhang, J. Wang, B.-Y. Zhang, B.-H. Guo, J. Yu, Z.-X. Guo, Improved electrical conductivity of polymer/carbon black composites by simultaneous dispersion and interaction-induced network assembly. Compos. Sci. Technol. 179, 106–114 (2019)

    Article  Google Scholar 

  9. A. Kozlovskiy, M. Zdorovets, The study of the structural characteristics and catalytic activity of Co/CoCo2O4 nanowires. Compos. Part B Eng. 191, 107968 (2020)

    Article  Google Scholar 

  10. O. Yakovenko, L.Y. Matzui, L. Vovchenko, O. Lozitsky, O. Prokopov, O. Lazarenko, A. Zhuravkov, V. Oliynyk, V. Launets, S. Trukhanov, Electrophysical properties of epoxy-based composites with graphite nanoplatelets and magnetically aligned magnetite. Mol. Cryst. Liq. Cryst. 661(1), 68–80 (2018)

    Article  Google Scholar 

  11. H. Wu, L.T. Drzal, Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 50(3), 1135–1145 (2012)

    Article  Google Scholar 

  12. Z. Wang, L. Mo, S. Zhao, J. Li, S. Zhang, A. Huang, Mechanically robust nacre-mimetic framework constructed polypyrrole-doped graphene/nanofiber nanocomposites with improved thermal electrical properties. Mater. Des. 155, 278–287 (2018)

    Article  Google Scholar 

  13. H. Zhang, G. Zhang, M. Tang, L. Zhou, J. Li, X. Fan, X. Shi, J. Qin, Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem. Eng. J. 353, 381–393 (2018)

    Article  Google Scholar 

  14. C. Ramirez, F.M. Figueiredo, P. Miranzo, P. Poza, M.I. Osendi, Graphene nanoplatelet/silicon nitride composites with high electrical conductivity. Carbon 50(10), 3607–3615 (2012)

    Article  Google Scholar 

  15. J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, C. Liu, Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49(4), 1094–1100 (2011)

    Article  Google Scholar 

  16. S. Azizi, E. David, M.F. Fréchette, P. Nguyen-Tri, C.M. Ouellet-Plamondon, Electrical and thermal conductivity of ethylene vinyl acetate composite with graphene and carbon black filler. Polym. Testing 72, 24–31 (2018)

    Article  Google Scholar 

  17. S. Cui, P. Wei, L. Li, Preparation of poly (propylene carbonate)/graphite nanoplates-spherical nanocrystal cellulose composite with improved glass transition temperature and electrical conductivity. Compos. Sci. Technol. 168, 63–73 (2018)

    Article  Google Scholar 

  18. S.-H. Yao, Z.-M. Dang, M.-J. Jiang, H.-P. Xu, J. Bai, Influence of aspect ratio of carbon nanotube on percolation threshold in ferroelectric polymer nanocomposite. Appl. Phys. Lett. 91(21), 212901 (2007)

    Article  Google Scholar 

  19. C. Li, E.T. Thostenson, T.-W. Chou, Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Appl. Phys. Lett. 91(22), 223114 (2007)

    Article  Google Scholar 

  20. H. Pang, T. Chen, G. Zhang, B. Zeng, Z.-M. Li, An electrically conducting polymer/graphene composite with a very low percolation threshold. Mater. Lett. 64(20), 2226–2229 (2010)

    Article  Google Scholar 

  21. Y. Pan, G. Weng, S. Meguid, W. Bao, Z.-H. Zhu, A. Hamouda, Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions. J. Appl. Phys. 110(12), 123715 (2011)

    Article  Google Scholar 

  22. K. Ahmad, W. Pan, S.-L. Shi, Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Appl. Phys. Lett. 89(13), 133122 (2006)

    Article  Google Scholar 

  23. Q. Zhang, S. Rastogi, D. Chen, D. Lippits, P.J. Lemstra, Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique. Carbon 44(4), 778–785 (2006)

    Article  Google Scholar 

  24. Y. Sun, H.-D. Bao, Z.-X. Guo, J. Yu, Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 42(1), 459–463 (2008)

    Article  Google Scholar 

  25. X. Zeng, X. Xu, P.M. Shenai, E. Kovalev, C. Baudot, N. Mathews, Y. Zhao, Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites. J. Phys. Chem. C 115(44), 21685–21690 (2011)

    Article  Google Scholar 

  26. P.-J. Wang, D. Zhou, J. Li, L.-X. Pang, W.-F. Liu, J.-Z. Su, C. Singh, S. Trukhanov, A. Trukhanov, Significantly enhanced electrostatic energy storage performance of P (VDF-HFP)/BaTiO3-Bi (Li0.5Nb0.5) O3 nanocomposites. Nano Energy 78, 105247 (2020)

    Article  Google Scholar 

  27. D.-W. Kim, J.H. Lim, J. Yu, Efficient prediction of the electrical conductivity and percolation threshold of nanocomposite containing spherical particles with three-dimensional random representative volume elements by random filler removal. Compos. B Eng. 168, 387–397 (2019)

    Article  Google Scholar 

  28. I. Alig, T. Skipa, D. Lellinger, M. Bierdel, H. Meyer, Dynamic percolation of carbon nanotube agglomerates in a polymer matrix: comparison of different model approaches. Phys. Status Solidi (b) 245(10), 2264–2267 (2008)

    Article  Google Scholar 

  29. N.P. Singh, V. Gupta, A.P. Singh, Graphene and carbon nanotube reinforced epoxy nanocomposites: A review. Polymer 180, 121724 (2019)

    Article  Google Scholar 

  30. A. Kozlovskiy, I. Kenzhina, M. Zdorovets, FeCo–Fe2CoO4/Co3O4 nanocomposites: phase transformations as a result of thermal annealing and practical application in catalysis. Ceram. Int. 46(8), 10262–10269 (2020)

    Article  Google Scholar 

  31. R. Socher, B. Krause, S. Hermasch, R. Wursche, P. Pötschke, Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black. Compos. Sci. Technol. 71(8), 1053–1059 (2011)

    Article  Google Scholar 

  32. W. Qin, F. Vautard, L.T. Drzal, J. Yu, Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase. Compos. B Eng. 69, 335–341 (2015)

    Article  Google Scholar 

  33. X. Duan, H. Zhang, J. Liu, Y. Gao, X. Zhao, L. Zhang, Optimizing the electrical conductivity of polymer nanocomposites under the shear field by hybrid fillers: Insights from molecular dynamics simulation. Polymer 168, 138–145 (2019)

    Article  Google Scholar 

  34. J. Li, J.-K. Kim, Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 67(10), 2114–2120 (2007)

    Article  Google Scholar 

  35. A. Mora, F. Han, G. Lubineau, Estimating and understanding the efficiency of nanoparticles in enhancing the conductivity of carbon nanotube/polymer composites. Results Phys. 10, 81–90 (2018)

    Article  Google Scholar 

  36. A. Gbaguidi, S. Namilae, D. Kim, Stochastic percolation model for the effect of nanotube agglomeration on the conductivity and piezoresistivity of hybrid nanocomposites. Comput. Mater. Sci. 166, 9–19 (2019)

    Article  Google Scholar 

  37. İ Mutlay, L.B. Tudoran, Percolation behavior of electrically conductive graphene nanoplatelets/polymer nanocomposites: theory and experiment. Fullerenes Nanotubes Carbon Nanostruct. 22(5), 413–433 (2014)

    Article  Google Scholar 

  38. Y. Perets, L. Aleksandrovych, M. Melnychenko, O. Lazarenko, L. Vovchenko, L. Matzui, The electrical properties of hybrid composites based on multiwall carbon nanotubes with graphite nanoplatelets. Nanoscale Res. Lett. 12(1), 406 (2017)

    Article  Google Scholar 

  39. K. Xu, D. Erricolo, M. Dutta, M.A. Stroscio, Electrical conductivity and dielectric properties of PMMA/graphite nanoplatelet ensembles. Superlattices Microstruct. 51(5), 606–612 (2012)

    Article  Google Scholar 

  40. M.H. Al-Saleh, Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synth. Met. 209, 41–46 (2015)

    Article  Google Scholar 

  41. G. Ambrosetti, C. Grimaldi, I. Balberg, T. Maeder, A. Danani, P. Ryser, Solution of the tunneling-percolation problem in the nanocomposite regime. Phys. Rev. B 81(15), 155434 (2010)

    Article  Google Scholar 

  42. Y. Yu, G. Song, L. Sun, Determinant role of tunneling resistance in electrical conductivity of polymer composites reinforced by well dispersed carbon nanotubes. J. Appl. Phys. 108(8), 084319 (2010)

    Article  Google Scholar 

  43. W. Bao, S. Meguid, Z. Zhu, G. Weng, Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J. Appl. Phys. 111(9), 093726 (2012)

    Article  Google Scholar 

  44. C. Fang, J. Zhang, X. Chen, G.J. Weng, A Monte Carlo model with equipotential approximation and tunneling resistance for the electrical conductivity of carbon nanotube polymer composites. Carbon 146, 125–138 (2019)

    Article  Google Scholar 

  45. S. Maiti, S. Suin, N.K. Shrivastava, B. Khatua, Low percolation threshold in polycarbonate/multiwalled carbon nanotubes nanocomposites through melt blending with poly (butylene terephthalate). J. Appl. Polym. Sci. 130(1), 543–553 (2013)

    Article  Google Scholar 

  46. F. Deng, Q.-S. Zheng, An analytical model of effective electrical conductivity of carbon nanotube composites. Appl. Phys. Lett. 92(7), 071902 (2008)

    Article  Google Scholar 

  47. T. Takeda, Y. Shindo, Y. Kuronuma, F. Narita, Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer 52(17), 3852–3856 (2011)

    Article  Google Scholar 

  48. H.M. Shanshool, M. Yahaya, W.M.M. Yunus, I.Y. Abdullah, Investigation of energy band gap in polymer/ZnO nanocomposites. J. Mater. Sci.: Mater. Electron. 27(9), 9804–9811 (2016)

    Google Scholar 

  49. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Article  Google Scholar 

  50. S. Maiti, B. Khatua, Graphene nanoplate and multiwall carbon nanotube–embedded polycarbonate hybrid composites: High electromagnetic interference shielding with low percolation threshold. Polym. Compos. 37(7), 2058–2069 (2016)

    Article  Google Scholar 

  51. M.A. Darwish, A.V. Trukhanov, O.S. Senatov, A.T. Morchenko, S.A. Saafan, K.A. Astapovich, S.V. Trukhanov, E.L. Trukhanova, A.A. Pilyushkin, A.S.B. Sombra, Investigation of AC-measurements of epoxy/ferrite composites. Nanomaterials 10(3), 492 (2020)

    Article  Google Scholar 

  52. H. Liu, M. Dong, W. Huang, J. Gao, K. Dai, J. Guo, G. Zheng, C. Liu, C. Shen, Z. Guo, Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C 5(1), 73–83 (2017)

    Article  Google Scholar 

  53. Q.-Q. Bai, X. Wei, J.-H. Yang, N. Zhang, T. Huang, Y. Wang, Z.-W. Zhou, Dispersion and network formation of graphene platelets in polystyrene composites and the resultant conductive properties. Compos. Part A Appl. Sci. Manuf. 96, 89–98 (2017)

    Article  Google Scholar 

  54. Q. Wang, J. Dai, W. Li, Z. Wei, J. Jiang, The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos. Sci. Technol. 68(7–8), 1644–1648 (2008)

    Article  Google Scholar 

  55. P.-J. Wang, D. Zhou, H.-H. Guo, W.-F. Liu, J.-Z. Su, M.-S. Fu, C. Singh, S. Trukhanov, A. Trukhanov, Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core–shell BaTiO3@ MgO structures as the filler. J. Mater. Chem. A 8(22), 11124–11132 (2020)

    Article  Google Scholar 

  56. M. Zdorovets, I. Kenzhina, V. Kudryashov, A. Kozlovskiy, Helium swelling in WO3 microcomposites. Ceram. Int. 46(8), 10521–10529 (2020)

    Article  Google Scholar 

  57. M. Zdorovets, A. Kozlovskiy, The effect of lithium doping on the ferroelectric properties of LST ceramics. Ceram. Int. 46(10), 14548–14557 (2020)

    Article  Google Scholar 

  58. S. Trukhanov, L. Lobanovski, M. Bushinsky, I. Troyanchuk, H. Szymczak, Magnetic phase transitions in the anion-deficient La1−xBaxMnO3− x/2 (0≤ x≤ 0.50) manganites. J. Phys. Condens. Matter 15(10), 1783 (2003)

    Article  Google Scholar 

  59. S. Trukhanov, A. Trukhanov, C. Botez, A. Adair, H. Szymczak, R. Szymczak, Phase separation and size effects in Pr0. 70Ba0. 30MnO3+ δ perovskite manganites. J. Phys. Condens. Matter 19(26), 266214 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Ansari or M. K. Hassanzadeh-Aghdam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghgoo, M., Ansari, R. & Hassanzadeh-Aghdam, M.K. Synergic effect of graphene nanoplatelets and carbon nanotubes on the electrical resistivity and percolation threshold of polymer hybrid nanocomposites. Eur. Phys. J. Plus 136, 768 (2021). https://doi.org/10.1140/epjp/s13360-021-01774-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01774-5

Navigation