Skip to main content
Log in

Study of Wide-Gap Semiconductors Using Electron-Beam Induced Current Method

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The studies of wide-gap semiconductor materials using electron-beam induced current (EBIC) method are reviewed. The main methods for measuring the diffusion length of nonequilibrium carriers in semiconductor structures using the EBIC method in a scanning electron microscope are analyzed. The experimental results of measuring the diffusion lengths in GaN, Ga2O3, 4H-SiC, and ZnO are considered. The reliability of the obtained values is discussed. The EBIC possibilities for detecting dislocations and studying their recombination activity are demonstrated. The strategy for achieving high lateral resolution at EBIC measurements in crystals with submicron diffusion length is discussed. Examples of the influence of irradiation of wide-gap semiconductor materials by a low-energy electron beam on their electrical and optical properties are shown. The results of studying the recombination-enhanced dislocation glide in GaN and 4H-SiC under their electron-beam irradiation in a scanning electron microscope are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. I. Hanoka and R. O. Bell, Ann. Rev. Mater. Sci. 11, 353 (1981).

    Article  ADS  Google Scholar 

  2. H. J. Leamy, J. Appl. Phys. 53, R51 (1982). https://doi.org/10.1063/1.331667

    Article  ADS  Google Scholar 

  3. E. Yakimov, Scanning Microsc. 6, 81 (1992).

    Google Scholar 

  4. E. B. Yakimov, Zavod. Lab. 68, 63 (2002).

    Google Scholar 

  5. E. B. Yakimov, J. Phys.: Condens. Matter 14, 13069 (2002). https://doi.org/10.1088/0953-8984/14/48/352

    Article  ADS  Google Scholar 

  6. E. B. Yakimov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 3, 65 (2004).

  7. E. B. Yakimov, S. S. Borisov, and S. I. Zaitsev, Semiconductors 41, 411 (2007).

    Article  ADS  Google Scholar 

  8. E. B. Yakimov, J. Alloys Compd. 627, 344 (2015). https://doi.org/10.1016/j.jallcom.2014.11.229

    Article  Google Scholar 

  9. E. B. Yakimov, A. Y. Polyakov, Lee, and S. J. Pearton, J. Appl. Phys. 123, 161543 (2018). https://doi.org/10.1063/1.4995580

    Article  ADS  Google Scholar 

  10. C. Donolato, Appl. Phys. Lett. 46, 270 (1985). https://doi.org/10.1063/1.95654

    Article  ADS  Google Scholar 

  11. E. B. Yakimov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12, 1000 (2018).

    Article  Google Scholar 

  12. M. Beck, D. Streb, M. Vitzethum, et al., Phys. Rev. 64, 085307 (2001). https://doi.org/10.1103/PhysRevB.64.085307

    Article  Google Scholar 

  13. W. E. Bicknell, Infrared Phys. Technol. 43, 39 (2002). https://doi.org/10.1016/S1350-4495(01)00123-2

    Article  ADS  Google Scholar 

  14. P. S. Vergeles, V. V. Krapukhin, and E. B. Yakimov, Semiconductors 41, 235 (2007).

    Article  ADS  Google Scholar 

  15. V. V. Krapukhin, P. S. Vergeles, and E. B. Yakimov, Semiconductors 41, 407 (2007).

    Article  ADS  Google Scholar 

  16. W. Van Roosbroeck, J. Appl. Phys. 26, 380 (1955). https://doi.org/10.1063/1.1722002

    Article  ADS  Google Scholar 

  17. H. Higuchi and H. Tamura, Jpn. J. Appl. Phys. 4, 316 (1965). https://doi.org/10.1143/JJAP.4.316

    Article  ADS  Google Scholar 

  18. F. Berz and H. K. Kuiken, Solid-State Electron. 19, 437 (1976). https://doi.org/10.1016/0038-1101(76)90003-4

    Article  ADS  Google Scholar 

  19. C. Donolato, Solid-State Electron. 25, 1077 (1982). https://doi.org/10.1016/0038-1101(82)90144-7

    Article  ADS  Google Scholar 

  20. K. L. Luke, O. von Roos, and L. Cheng, J. Appl. Phys. 57, 1978 (1985). https://doi.org/10.1063/1.334382

    Article  ADS  Google Scholar 

  21. D. E. Ioannou and C. A. Dimitriadis, IEEE Trans. Electron. Dev. ED-29, 445 (1982).

    Article  Google Scholar 

  22. H. K. Kuiken and C. van Opdorp, J. Appl. Phys. 57, 2077 (1985). https://doi.org/10.1063/1.334400

    Article  ADS  Google Scholar 

  23. B. E. Artz, J. Appl. Phys. 57, 2886 (1985). https://doi.org/10.1063/1.335225

    Article  ADS  Google Scholar 

  24. C. Donolato, Solid-State Electron. 28, 1143 (1985). https://doi.org/10.1016/0038-1101(85)90195-9

    Article  ADS  Google Scholar 

  25. J. Boersma, J. J. E. Indenkleef, and H. K. Kuiken, J. Eng. Math. 18, 315 (1984). https://doi.org/10.1007/BF00042845

    Article  Google Scholar 

  26. H. Holloway, J. Appl. Phys. 55, 3669 (1984). https://doi.org/10.1063/1.332917

    Article  ADS  Google Scholar 

  27. K. L. Luke, J. Appl. Phys. 80, 5775 (1996). https://doi.org/10.1063/1.363633

    Article  ADS  Google Scholar 

  28. C. J. Wu and D. B. Wittry, J. Appl. Phys. 49, 2827 (1978). https://doi.org/10.1063/1.325163

    Article  ADS  Google Scholar 

  29. J. Y. Chi and H. C. Gatos, J. Appl. Phys. 50, 3433 (1979). https://doi.org/10.1063/1.326336

    Article  ADS  Google Scholar 

  30. E. B. Yakimov and V. V. Privezentsev, J. Mater. Sci: Mater. Electron. 19, S277 (2008). https://doi.org/10.1007/s10854-008-9730-1

    Article  Google Scholar 

  31. E. B. Yakimov, A. Y. Polyakov, N. B. Smirnov, et al., J. Appl. Phys. 123, 185704 (2018). https://doi.org/10.1063/1.5027559

    Article  ADS  Google Scholar 

  32. A. A. Svintsov, A. A. Krasnov, M. A. Polikarpov, et al., Appl. Radiat. Isot. 137, 184 (2018). https://doi.org/10.1016/j.apradiso.2018.04.010

  33. T. Kobayashi, Appl. Phys. Lett. 21, 150 (1972). https://doi.org/10.1063/1.1654321

    Article  ADS  Google Scholar 

  34. C. Klein, J. Appl. Phys. 39, 2029 (1968). https://doi.org/10.1063/1.1656484

    Article  ADS  Google Scholar 

  35. O. Palais, E. Yakimov, and S. Martinuzzi, Mater. Sci. Eng. B 91–92, 216 (2002). https://doi.org/10.1016/S0921-5107(01)00998-9

    Article  Google Scholar 

  36. E. B. Yakimov, Phys. Status Solidi C 14, 1600266 (2017). https://doi.org/10.1002/pssc.201600266

    Article  Google Scholar 

  37. S. M. Davidson and C. A. Dimitriadis, J. Microsc. 118, 275 (1980). https://doi.org/10.1111/j.1365-2818.1980.tb00274.x

    Article  Google Scholar 

  38. J. C. Gonzalez, K. L. Bunker, and P. E. Russell, Appl. Phys. Lett. 79, 1567 (2001). https://doi.org/10.1063/1.1400075

    Article  ADS  Google Scholar 

  39. A. Matoussi, T. Boufaden, S. Guermazi, et al., Phys. Status Solidi B 240, 160 (2003). https://doi.org/10.1002/pssb.200301870

    Article  ADS  Google Scholar 

  40. K. Kumakura, T. Makimoto, N. Kobayashi, et al., Appl. Phys. Lett. 86, 052105 (2005). https://doi.org/10.1063/1.1861116

    Article  ADS  Google Scholar 

  41. G. Moldovan, P. Kazemian, P. R. Edwards, et al., Ultramicroscopy 107, 382 (2007). https://doi.org/10.1016/j.ultramic.2006.10.002

    Article  Google Scholar 

  42. Z. Z. Bandiĉ, P. M. Bridger, E. C. Piquette, and T. C. McGill, Appl. Phys. Lett. 72, 3166 (1998). https://doi.org/10.1063/1.121581

    Article  ADS  Google Scholar 

  43. C. Grazzi, M. Albrecht, H. P. Strunk, et al., Solid State Phenom. 8284, 807 (2002). https://doi.org/10.4028/www.scientific.net/SSP.82-84.807

  44. L. Chernyak, A. Osinsky, H. Temkin, et al., Appl. Phys. Lett. 69, 2531 (1996). https://doi.org/10.1063/1.117729

    Article  ADS  Google Scholar 

  45. Z. Z. Bandiĉ, P. M. Bridger, E. C. Piquette, and T. C. McGill, Appl. Phys. Lett. 73, 3276 (1998). https://doi.org/10.1063/1.122743

    Article  ADS  Google Scholar 

  46. L. Chernyak, W. Burdett, and A. Osinsky, Appl. Phys. Lett. 81, 1633 (2002). https://doi.org/10.1063/1.1503407

    Article  ADS  Google Scholar 

  47. E. B. Yakimov, P. S. Vergeles, A. Y. Polyakov, et al., Appl. Phys. Lett. 90, 152114 (2007). https://doi.org/10.1063/1.2722668

    Article  ADS  Google Scholar 

  48. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, et al., J. Vac. Sci. Technol. B 26, 990 (2008). https://doi.org/10.1116/1.2919148

    Article  Google Scholar 

  49. K. H. Gulden, P. Kiesel, P. Riel, and G. H. Dohler, Surf. Sci. 267, 566 (1992). https://doi.org/10.1016/0039-6028(92)91201-L

    Article  ADS  Google Scholar 

  50. N. M. Shmidt, O. A. Soltanovich, A. S. Usikov, et al., J. Phys: Condens. Matter 14, 13285 (2002). https://doi.org/10.1088/0953-8984/14/48/379

    Article  ADS  Google Scholar 

  51. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, et al., J. Electron. Mater. 36, 1320 (2007). https://doi.org/10.1007/s11664-007-0203-8

    Article  ADS  Google Scholar 

  52. N. M. Shmidt, P. S. Vergeles, and E. B. Yakimov, Semiconductors 41, 491 (2007).

    Article  ADS  Google Scholar 

  53. E. B. Yakimov, P. S. Vergeles, A. Y. Polyakov, et al., Appl. Phys. Lett. 92, 042118 (2008). https://doi.org/10.1063/1.2840190

    Article  ADS  Google Scholar 

  54. I.-H. Lee, A. Y. Polyakov, N. B. Smirnov, et al., Appl. Phys. Lett. 98, 212107 (2011). https://doi.org/10.1063/1.3593957

    Article  ADS  Google Scholar 

  55. E. B. Yakimov, Jpn. J. Appl. Phys. 55, 05FH04 (2016). https://doi.org/10.7567/JJAP.55.05FH04

    Article  Google Scholar 

  56. M. A. Bryushinin, I. A. Sokolov, R. V. Pisarev, et al., Opt. Express 23, 32736 (2015). https://doi.org/10.1364/OE.23.032736

    Article  ADS  Google Scholar 

  57. J. Yang, F. Ren, R. Khanna, et al., J. Vac. Sci. Technol. B 35, 051201 (2017). https://doi.org/10.1364/OE.23.032736

    Article  Google Scholar 

  58. A. Y. Polyakov, N. B. Smirnov, I. V. Shchemerov, et al., Appl. Phys. Lett. 112, 032107 (2018). https://doi.org/10.1063/1.5012993

    Article  ADS  Google Scholar 

  59. A. Y. Polyakov, N. B. Smirnov, I. V. Shchemerov, et al., Appl. Phys. Lett. 113, 092102 (2018). https://doi.org/10.1063/1.5049130

    Article  ADS  Google Scholar 

  60. J. Lee, E. Flitsiyan, L. Chernyak, et al., Appl. Phys. Lett. 112, 082104 (2018). https://doi.org/10.1063/1.5049130

    Article  ADS  Google Scholar 

  61. A. Y. Polyakov, I.-H. Lee, N. B. Smirnov, et al., Appl. Phys. Lett. 115, 032101 (2019). https://doi.org/10.1063/1.5108790

    Article  ADS  Google Scholar 

  62. A. Y. Polyakov, I.-H. Lee, N. B. Smirnov, et al., APL Mater. 7, 061102 (2019). https://doi.org/10.1063/1.5109025

    Article  ADS  Google Scholar 

  63. S. Modak, J. Lee, L. Chernyak, et al., AIP Adv. 9, 015127 (2019). https://doi.org/10.1063/1.5079730

    Article  ADS  Google Scholar 

  64. S. Modak, L. Chernyak, S. Khodorov, et al., ECS J. Solid State Sci. Technol. 8, Q3050 (2019). https://doi.org/10.1149/2.0101907jss

    Article  Google Scholar 

  65. J. B. Varley, A. Janotti, C. Franchini, and. C. G. Van de Walle, Phys. Rev. B 85, 081109(R) (2012). https://doi.org/10.1103/PhysRevB.85.081109

  66. T. Gake, Y. Kumagai, and F. Oba, Phys. Rev. Mater. 3, 044603 (2019). https://doi.org/10.1103/PhysRevMaterials.3.044603

    Article  Google Scholar 

  67. S. Yamaoka and M. Nakayama, Phys. Status Solidi C 13, 93 (2016). https://doi.org/10.1002/pssc.201510124

    Article  ADS  Google Scholar 

  68. A. M. Armstrong, M. H. Crawford, A. Jayawardena, et al., J. Appl. Phys. 119, 103102 (2016). https://doi.org/10.1063/1.4943261

    Article  ADS  Google Scholar 

  69. O. Katz, V. Garber, B. Meyler, et al., Appl. Phys. Lett. 79, 1417 (2001). https://doi.org/10.1063/1.1394717

    Article  ADS  Google Scholar 

  70. B. E. Kananen, N. C. Giles, L. E. Halliburton, et al., J. Appl. Phys. 122, 215703 (2017). https://doi.org/10.1063/1.5007095

    Article  ADS  Google Scholar 

  71. S. J. Pearton, J. Yang, F. Ren, and J. Kim, Ultra-Wide Bandgap Semiconductor Materials, Ed. by M. Liao (Elsevier, Amsterdam, 2019), p. 263.

    Google Scholar 

  72. E. Chikoidze, A. Fellous, A. Perez-Tomas, et al., Mater. Today Phys. 3, 118 (2017). https://doi.org/10.1016/j.mtphys.2017.10.002

    Article  Google Scholar 

  73. Z. Feng, A. F. M. A. U. Bhuiyan, M. R. Karim, and H. Zhao, Appl. Phys. Lett. 114, 250601 (2019). https://doi.org/10.1063/1.5109678

    Article  ADS  Google Scholar 

  74. C. Díaz-Guerra and J. Piqueras, J. Phys.: Condens. Matter 16, S217 (2004). https://doi.org/10.1088/0953-8984/16/2/026

    Article  ADS  Google Scholar 

  75. O. Lopatiuk, L. Chernyak, A. Osinsky, et al., Appl. Phys. Lett. 87, 162103 (2005). https://doi.org/10.1063/1.2106001

    Article  ADS  Google Scholar 

  76. O. Lopatiuk-Tirpak, L. Chernyak, F. X. Xiu, et al., J. Appl. Phys. 100, 086101 (2006). https://doi.org/10.1063/1.2358844

    Article  ADS  Google Scholar 

  77. Y. Lin, M. Shatkhin, E. Flitsiyan, et al., J. Appl. Phys. 109, 016107 (2011). https://doi.org/10.1063/1.3530732

    Article  ADS  Google Scholar 

  78. B. Chen, J. Chen, T. Sekiguchi, et al., J. Mater. Sci.: Mater. Electron. 19, S219 (2008). https://doi.org/10.1007/s10854-008-9614-4

    Article  Google Scholar 

  79. Y.-Z. Yao, Y. Sugawara, Y. Ishikawa, et al., Mater. Sci. 679680, 294 (2011). https://doi.org/10.4028/www.scientific.net/MSF.679-680.294

  80. S. Maximenko, S. Soloviev, D. Cherednichenko, and T. Sudarshan, Appl. Phys. Lett. 84, 1576 (2004). https://doi.org/10.1063/1.1652229

    Article  ADS  Google Scholar 

  81. S. Maximenko, S. Soloviev, D. Cherednichenko, and T. Sudarshan, J. Appl. Phys. 97, 013533 (2005). https://doi.org/10.1063/1.1828605

    Article  ADS  Google Scholar 

  82. K. Maeda, Materials and Reliability Handbook for Semiconductor Optical and Electron Devices (Springer Science & Business Media, New York, 2013), p. 263.

    Google Scholar 

  83. S. I. Maximenko, P. Pirouz, and T. S. Sudarshan, Appl. Phys. Lett. 87, 033503 (2005). https://doi.org/10.1063/1.1999297

    Article  ADS  Google Scholar 

  84. V. I. Orlov, G. Regula, and E. B. Yakimov, Acta Mater. 139, 155 (2017). https://doi.org/10.1016/j.actamat.2017.07.046

  85. B. Chen, J. Chen, T. Sekiguchi, et al., Superlattices Microstruct. 45, 295 (2009). https://doi.org/10.1016/j.spmi.2008.10.021

    Article  ADS  Google Scholar 

  86. E. B. Yakimov, G. Regula, and B. Pichaud, J. Appl. Phys. 114, 084903 (2013). https://doi.org/10.1063/1.4818306

    Article  ADS  Google Scholar 

  87. C. Donolato, Optik 52, 19 (1978/1979).

    Google Scholar 

  88. C. Donolato, Semicond. Sci. Technol. 7, 37 (1992). https://doi.org/10.1088/0268-1242/7/1/007

    Article  ADS  Google Scholar 

  89. C. Donolato, J. Appl. Phys. 84, 2656 (1998). https://doi.org/10.1063/1.368378

    Article  ADS  Google Scholar 

  90. V. V. Sirotkin, E. B. Yakimov, and S. I. Zaitsev, Mater. Sci. Eng. B 42, 176 (1996). https://doi.org/10.1016/S0921-5107(96)01702-3

    Article  Google Scholar 

  91. C. Donolato, J. Appl. Phys. 54, 1314 (1983). https://doi.org/10.1063/1.332205

    Article  ADS  Google Scholar 

  92. V. Kveder, M. Kittler, and W. Schröter, Phys. Rev. B 63, 115208 (2001). https://doi.org/10.1103/PhysRevB.63.115208

    Article  ADS  Google Scholar 

  93. C. Donolato, Appl. Phys. Let. 34, 80 (1979). https://doi.org/10.1063/1.90567

    Article  ADS  Google Scholar 

  94. N. M. Shmidt, V. V. Sirotkin, A. S. Usikov, et al., Inst. Phys. Conf. Ser., No. 180, 597 (2003).

  95. G. Moldovan, I. Harrison, and P. D. Brown, Inst. Phys. Conf. Ser. Inst. Phys. Conf. Ser., No. 180, 577 (2003).

  96. P. S. Vergeles and E. B. Yakimov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 3, 58 (2009).

    Article  Google Scholar 

  97. C. Donolato, Semicond. Sci. Technol. 13, 781 (1998). https://doi.org/10.1088/0268-1242/13/7/021

    Article  ADS  Google Scholar 

  98. E. B. Yakimov, P. S. Vergeles, A. V. Govorkov, et al., Superlattices Microstruct. 45, 308 (2009). https://doi.org/10.1016/j.spmi.2008.09.008

    Article  ADS  Google Scholar 

  99. Lee, A. Y. Polyakov, N. B. Smirnov, et al., J. Appl. Phys. 119, 205109 (2016). https://doi.org/10.1063/1.4952734

    Article  ADS  Google Scholar 

  100. A. Y. Polyakov, N. B. Smirnov, E. B. Yakimov, et al., J. Alloys Compd. 686, 1044 (2016). https://doi.org/10.1016/j.jallcom.2016.06.297

    Article  Google Scholar 

  101. R. Xie, T. Sekiguchi, and T. Ishigaki et al., Appl. Phys. Lett. 88, 134103 (2006). https://doi.org/10.1063/1.2189200

    Article  ADS  Google Scholar 

  102. B. Dierre, X. L. Yuan, and T. Sekiguchi, J. Appl. Phys. 104, 043528 (2008). https://doi.org/10.1063/1.2973190

    Article  ADS  Google Scholar 

  103. A. N. Gruzintsev, A. N. Red’kin, E. E. Yakimov, and E. B. Yakimov, Phys. Status Solidi C 8, 1403 (2011). https://doi.org/10.1002/pssc.201084006

    Article  ADS  Google Scholar 

  104. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989). https://doi.org/10.1143/JJAP.28.L2112

    Article  ADS  Google Scholar 

  105. C. H. Seager, S. M. Myers, B. Vaandrager, and J. S. Nelson, Appl. Phys. Lett. 80, 2693 (2002). https://doi.org/10.1063/1.1468917

    Article  ADS  Google Scholar 

  106. S. Dassonneville, A. Amokrane, B. Sieber, et al., Physica B 273–274, 148 (1999). https://doi.org/10.1016/S0921-4526(99)00434-2

    Article  ADS  Google Scholar 

  107. M. Toth, K. Fleischer, and M. R. Phillips, Phys. Rev. 59, 1575 (1999). https://doi.org/10.1103/PhysRevB.59.1575

    Article  ADS  Google Scholar 

  108. Y. C. Chang, A. L. Cai, M. A. L. Johnson, et al., Appl. Phys. Lett. 80, 2675 (2002). https://doi.org/10.1063/1.1469222

    Article  ADS  Google Scholar 

  109. U. Jahn, S. Dhar, H. Kostial, et al., Phys. Status Solidi C 0, 2223 (2003). https://doi.org/10.1002/pssc.200303290

    Article  Google Scholar 

  110. N. M. Shmidt, P. S. Vergeles, E. E. Yakimov, and E. B. Yakimov, Solid State Commun. 151, 208 (2011). https://doi.org/10.1016/j.ssc.2010.11.032

    Article  ADS  Google Scholar 

  111. M. Thomsen, H. Jönen, U. Rossow, and A. Hangleiter, J. Appl. Phys. 109, 123710 (2011). https://doi.org/10.1063/1.3600221

    Article  ADS  Google Scholar 

  112. P. S. Vergeles, N. M. Shmidt, and E. B. Yakimov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5, 945 (2011).

    Article  Google Scholar 

  113. E. B. Yakimov, P. S. Vergeles, A. Y. Polyakov, et al., J. Vac. Sci. Technol. B 32, 011207 (2014). https://doi.org/10.1116/1.4840255

    Article  Google Scholar 

  114. E. B. Yakimov, A. Y. Polyakov, and P. S. Vergeles, Phys. Status Solidi B 255, 1700646 (2018). https://doi.org/10.1002/pssb.201700646

    Article  ADS  Google Scholar 

  115. K. Maeda, K. Suzuki, and M. Ichihara, Physica B 273–274, 134 (1999). https://doi.org/10.1016/S0921-4526(99)00424-X

    Article  ADS  Google Scholar 

  116. E. B. Yakimov, P. S. Vergeles, A. Y. Polyakov, et al., Appl. Phys. Lett. 106, 132101 (2015). https://doi.org/10.1063/1.4916632

    Article  ADS  Google Scholar 

  117. E. B. Yakimov, P. S. Vergeles, A. Y. Polyakov, et al., Jpn. J. Appl. Phys. 55, 05FM03 (2016). https://doi.org/10.7567/JJAP.55.05FM03

    Article  Google Scholar 

  118. P. S. Vergeles, V. I. Orlov, and A. Y. Polyakov, J. Alloys Compd. 776, 181 (2019). https://doi.org/10.1016/j.jallcom.2018.10.280

  119. M. Skowronski, J. Q. Liu, and W. M. Vetter, J. Appl. Phys. 92, 4699 (2002). https://doi.org/10.1063/1.1505994

    Article  ADS  Google Scholar 

  120. A. Galeckas, J. Linnros, and P. Pirouz, Phys. Rev. Lett. 96, 025502 (2006). https://doi.org/10.1103/PhysRevLett.96.025502

    Article  ADS  Google Scholar 

  121. G. Regula and E. B. Yakimov, Superlattices Microstruct. 99, 226 (2016). https://doi.org/10.1016/j.spmi.2016.02.015

    Article  ADS  Google Scholar 

  122. Y. Ishikawa, M. Sudo, Y.-Z. Yao, et al., J. Appl. Phys. 123, 225101 (2018). https://doi.org/10.1063/1.5026448

    Article  ADS  Google Scholar 

  123. E. B. Yakimov, E. E. Yakimov, V. I. Orlov, and D. Gogova, Superlattices Microstruct. 120, 7 (2018). https://doi.org/10.1016/j.spmi.2018.05.014

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported in part by State contract no. 075-00355-21-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Yakimov.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakimov, E.B. Study of Wide-Gap Semiconductors Using Electron-Beam Induced Current Method. Crystallogr. Rep. 66, 581–593 (2021). https://doi.org/10.1134/S1063774521040222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521040222

Navigation