Skip to main content
Log in

In Situ Reflection Electron Microscopy for the Analysis of Silicon Surface Processes: Sublimation, Electromigration, and Adsorption of Impurity Atoms

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The results of recent studies of the structural morphological transformations of Si(111) and Si(100) surfaces using in situ ultrahigh-vacuum reflection electron microscopy (UHV REM) are presented. It is established that high-temperature sublimation from extremely wide Si(111) terraces occurs at a smaller activation energy (3.77 eV) than from the vicinal surface (4.04 eV). A nonmonotonic change in the kinetics of step bunching during a smooth transition from sublimation to growth on the Si(100) surface is recorded. The structural transformations caused by electromigration of positively charged Sn adatoms on the reconstructed Si(111) surface are demonstrated. It is shown that Si(111) surface etching under exposure to a Se molecular beam occurs in a layer-by-layer mode due to the desorption of SiSe2 molecules with activation energy of 2.65 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. Feigelson, 50 Years Progress in Crystal Growth: A Reprint Collection (Elsevier Science, 2004). https://books.google.ru/books?id0lEcYdpLlB0C

  2. H. Nakamura, S. Kohmoto, T. Ishikawa, et al., Physica E 7, 331 (2000). https://doi.org/10.1016/S1386-9477(99)00335-5

    Article  ADS  Google Scholar 

  3. S. Tanaka, R. S. Kern, and R. F. Davis, Appl. Phys. Lett. 66, 37 (1995). https://doi.org/10.1063/1.114173

    Article  ADS  Google Scholar 

  4. T. Oshima, N. Arai, N. Suzuki, et al., Thin Solid Films 516, 5768 (2008). https://doi.org/10.1016/j.tsf.2007.10.045

    Article  ADS  Google Scholar 

  5. J.-N. Aqua, I. Berbezier, L. Favre, et al., Phys. Rep. 522, 59 (2013). https://doi.org/10.1016/j.physrep.2012.09.006

    Article  ADS  Google Scholar 

  6. J.-C. Harmand, G. Patriarche, F. Glas, et al., Phys. Rev. Lett. 121, 166101 (2018). https://doi.org/10.1103/PhysRevLett.121.166101

    Article  ADS  Google Scholar 

  7. A. V. Latyshev, L. I. Fedina, S. S. Kosolobov, et al., Adv. Semicond. Nanostruct. 189 (2017). https://doi.org/10.1016/B978-0-12-810512-2.00008-1

  8. E. Ruska, Rev. Mod. Phys. 59, 627 (1987). https://doi.org/10.1103/RevModPhys.59.627

    Article  ADS  Google Scholar 

  9. O. Nobuyuki, T. Yasumasa, Y. Katsumichi, et al., Surf. Sci. 102, 424 (1981). https://doi.org/10.1016/0039-6028(81)90038-8

    Article  ADS  Google Scholar 

  10. P. E. H. Nielsen and J. M. Cowley, Surf. Sci. 54, 340 (1976). https://doi.org/10.1016/0039-6028(76)90230-2

    Article  ADS  Google Scholar 

  11. A. V. Latyshev, A. B. Krasilnikov, and A. L. Aseev, Ultramicroscopy 48, 377 (1993). https://doi.org/10.1016/0304-3991(93)90115-E

    Article  Google Scholar 

  12. A. V. Latyshev, A. L. Aseev, and S. I. Stenin, Pis’ma Zh. Eksp. Teor. Fiz. 47, 448 (1988).

    ADS  Google Scholar 

  13. H. J. W. Zandvliet, H. Wormeester, D. J. Wentink, et al., Phys. Rev. Lett. 70, 2122 (1993). https://doi.org/10.1103/PhysRevLett.70.2122

    Article  ADS  Google Scholar 

  14. A. V. Latyshev, L. I. Fedina, D. I. Rogilo, et al., Atomically Controlled Silicon Surface (Parallel, Novosibirsk, 2016).

    Google Scholar 

  15. S. V. Sitnikov, S. S. Kosolobov, D. V. Shcheglov, et al., Patent RU 2453874 (2011).

  16. D. I. Rogilo, N. E. Rybin, L. I. Fedina, et al., Optoelectronics, Instrumentation and Data Processing 52, 501 (2016). https://doi.org/10.3103/S8756699016050125

  17. D. I. Rogilo, L. I. Fedina, S. S. Kosolobov, et al., Surf. Sci. 667, 1 (2018). https://doi.org/10.1016/j.susc.2017.09.009

    Article  ADS  Google Scholar 

  18. W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. Soc. A 243, 299 (1951). https://doi.org/10.1098/rsta.1951.0006

    Article  ADS  Google Scholar 

  19. N. C. Bartelt, R. M. Tromp, and E. D. Williams, Phys. Rev. Lett. 73, 1656 (1994). https://doi.org/10.1103/PhysRevLett.73.1656

    Article  ADS  Google Scholar 

  20. J. J. Metois and D. E. Wolf, Surf. Sci. 298, 71 (1993). https://doi.org/10.1016/0039-6028(93)90081-T

    Article  ADS  Google Scholar 

  21. R. M. Tromp and M. C. Reuter, Phys. Rev. Lett. 68, 820 (1992). https://doi.org/10.1103/PhysRevLett.68.820

    Article  ADS  Google Scholar 

  22. R. M. Tromp and M. C. Reuter, Phys. Rev. B 47, 7598 (1993). https://doi.org/10.1103/PhysRevB.47.7598

    Article  ADS  Google Scholar 

  23. A. Pimpinelli and J.-J. Métois, Phys. Rev. Lett. 72, 3566 (1994). https://doi.org/10.1103/PhysRevLett.72.3566

    Article  ADS  Google Scholar 

  24. S. Sitnikov, S. Kosolobov, and A. Latyshev, Surf. Sci. 633, L1 (2015). https://doi.org/10.1016/j.susc.2014.12.004

    Article  ADS  Google Scholar 

  25. S. V. Sitnikov, A. V. Latyshev, and S. S. Kosolobov, J. Cryst. Growth 457, 196 (2017). https://doi.org/10.1016/j.jcrysgro.2016.05.048

    Article  ADS  Google Scholar 

  26. B. Farid and R. W. Godby, Phys. Rev. B 43, 14248 (1991). https://doi.org/10.1103/PhysRevB.43.14248

    Article  ADS  Google Scholar 

  27. A. V. Latyshev and A. L. Aseev, Monatomic Steps on Silicon Surface (Izd-vo SO RAN, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  28. A. V. Latyshev and A. L. Aseev, Usp. Fiz. Nauk 168, 1117 (1998). https://doi.org/10.3367/UFNr.0168.199810c.1117

    Article  Google Scholar 

  29. A. V. Latyshev, Doctoral Dissertation in Physics and Mathematics: 01.04.10 (1996).

  30. A. V. Latyshev, A. L. Aseev, A. B. Krasilnikov, et al., Surf. Sci. 213, 157 (1989). https://doi.org/10.1016/0039-6028(89)90256-2

    Article  ADS  Google Scholar 

  31. S. Stoyanov, Jpn. J. Appl. Phys. 29, L659 (1990). https://doi.org/10.1143/JJAP.29.L659

    Article  ADS  Google Scholar 

  32. D. Kandel and E. Kaxiras, Phys. Rev. Lett. 76, 1114 (1996). https://doi.org/10.1103/PhysRevLett.76.1114

    Article  ADS  Google Scholar 

  33. M. Uwaha, Prog. Cryst. Growth 62, 58 (2016). https://doi.org/10.1016/j.pcrysgrow.2016.04.002

    Article  Google Scholar 

  34. L. V. Litvin, A. B. Krasilnikov, and A. V. Latyshev, Surf. Sci. 244, L121 (1991). https://doi.org/10.1016/0039-6028(91)90483-9

    Article  ADS  Google Scholar 

  35. A. V. Latyshev, L. V. Litvin, and A. L. Aseev, Appl. Surf. Sci. 130–132, 139 (1998). https://doi.org/10.1016/S0169-4332(98)00040-3

    Article  ADS  Google Scholar 

  36. E. E. Rodyakina, S. V. Sitnikov, D. I. Rogilo, et al., J. Cryst. Growth 520, 85 (2019). https://doi.org/10.1016/j.jcrysgro.2019.05.026

    Article  ADS  Google Scholar 

  37. E. E. Rodyakina, S. V. Sitnikov, D. I. Rogilo, et al., Sib. Fiz. Zh. 13, 60 (2018). https://doi.org/10.25205/2541-9447-2018-13-4-60-66

    Article  Google Scholar 

  38. H. Omi, Y. Homma, V. Tonchev, et al., Phys. Rev. Lett. 95, 216101 (2005). https://doi.org/10.1103/PhysRevLett.95.216101

    Article  ADS  Google Scholar 

  39. D. I. Rogilo, L. I. Fedina, S. S. Kosolobov, et al., Phys. Rev. Lett. 111, 036105 (2013). https://doi.org/10.1103/PhysRevLett.111.036105

    Article  ADS  Google Scholar 

  40. D. I. Rogilo, L. I. Fedina, S. S. Kosolobov, et al., J. Cryst. Growth 457, 188 (2017). https://doi.org/10.1016/j.jcrysgro.2016.06.028

    Article  ADS  Google Scholar 

  41. A. V. Latyshev, H. Minoda, Y. Tanishiro, et al., Surf. Sci. 401, 22 (1998). https://doi.org/10.1016/S0039-6028(97)00901-1

    Article  ADS  Google Scholar 

  42. S. S. Kosolobov, S. A. Song, L. I. Fedina, et al., JETP Lett. 81, 117 (2005). https://doi.org/10.1134/1.1898002

    Article  ADS  Google Scholar 

  43. S. S. Kosolobov, S. A. Song, E. E. Rodyakina, et al., Semiconductors 41, 448 (2007). https://doi.org/10.1134/S1063782607040173

    Article  ADS  Google Scholar 

  44. S. Kosolobov, G. Nazarikov, S. Sitnikov, et al., Surf. Sci. 687, 25 (2019). https://doi.org/10.1016/j.susc.2019.04.008

    Article  ADS  Google Scholar 

  45. S. Kosolobov, Sci. Rep. 9, 13428 (2019). https://doi.org/10.1038/s41598-019-49681-1

    Article  ADS  Google Scholar 

  46. H. Minoda, S. Sakamoto, and K. Yagi, Surf. Sci. 372, 1 (1997). https://doi.org/10.1016/S0039-6028(96)01138-7

    Article  ADS  Google Scholar 

  47. B. Voigtländer, A. Zinner, T. Weber, et al., Phys. Rev. B 51, 7583 (1995). https://doi.org/10.1103/PhysRevB.51.7583

    Article  ADS  Google Scholar 

  48. S. Wirths, D. Buca, and S. Mantl, Prog. Cryst. Growth 62, 1 (2016). https://doi.org/10.1016/j.pcrysgrow.2015.11.001

    Article  Google Scholar 

  49. T. Maeda, W. Jevasuwan, H. Hattori, et al., Jpn. J. Appl. Phys. 54, 04DA07 (2015). https://doi.org/10.7567/JJAP.54.04DA07

    Article  Google Scholar 

  50. A. S. Petrov, D. I. Rogilo, D. V. Sheglov, et al., J. Cryst. Growth 531, 125347 (2020). https://doi.org/10.1016/j.jcrysgro.2019.125347

    Article  Google Scholar 

  51. A. V. Latyshev, A. B. Krasilnikov, and A. L. Aseev, Appl. Surf. Sci. 60–61, 397 (1992). https://doi.org/10.1016/0169-4332(92)90450-C

    Article  ADS  Google Scholar 

  52. D. I. Rogilo, S. S. Kosolobov, L. I. Fedina, et al., International Workshop and Tutorials on Electron Devices and Materials, EDM Proceedings (2009), p. 48. https://doi.org/10.1109/EDM.2009.5173926

  53. C. Törnevik, M. Göthelid, M. Hammar, et al., Surf. Sci. 314, 179 (1994). https://doi.org/10.1016/0039-6028(94)90005-1

    Article  ADS  Google Scholar 

  54. A. Charrier, R. Pérez, F. Thibaudau, et al., Phys. Rev. B 64, 115407 (2001). https://doi.org/10.1103/PhysRevB.64.115407

    Article  ADS  Google Scholar 

  55. T. Ichikawa, Surf. Sci. 140, 37 (1984). https://doi.org/10.1016/0039-6028(84)90380-7

    Article  ADS  Google Scholar 

  56. H. Yasunaga and A. Natori, Surf. Sci. Rep. 15, 205 (1992). https://doi.org/10.1016/0167-5729(92)90007-X

    Article  ADS  Google Scholar 

  57. G. Fiori, F. Bonaccorso, G. Iannaccone, et al., Nat. Nanotechnol. 9, 768 (2014). https://doi.org/10.1038/nnano.2014.207

    Article  ADS  Google Scholar 

  58. S. Vishwanath, X. Liu, S. Rouvimov, et al., J. Mater. Res. 31, 900 (2016). https://doi.org/10.1557/jmr.2015.374

    Article  ADS  Google Scholar 

  59. D. I. Rogilo, L. I. Fedina, S. A. Ponomarev, et al., J. Cryst. Growth 529, 125273 (2020). https://doi.org/10.1016/j.jcrysgro.2019.125273

    Article  Google Scholar 

  60. A. C. Papageorgopoulos and M. Kamaratos, Surf. Sci. 504, L191 (2002). https://doi.org/10.1016/S0039-6028(02)01096-8

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Experiments were performed using equipment of the CKP Nanostruktury.

Funding

This study was supported by the Russian Science Foundation in the parts concerning the analysis of the sublimation processes on wide-terrace surfaces (grant no. 14-22-00143), analysis of the processes occurring during germanium deposition (grant no. 19-72-30023), and Si surface etching with a Se molecular beam (grant no. 18-72-10063) and the Russian Foundation for Basic Research (grant no. 16-32-60199) in the part concerning the analysis of the step bunching on the Si(100) surface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Rogilo.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogilo, D.I., Sitnikov, S.V., Rodyakina, E.E. et al. In Situ Reflection Electron Microscopy for the Analysis of Silicon Surface Processes: Sublimation, Electromigration, and Adsorption of Impurity Atoms. Crystallogr. Rep. 66, 570–580 (2021). https://doi.org/10.1134/S1063774521040192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521040192

Navigation